Boolean Algebras Canonically Defined - Underlying Lattice Structure

Underlying Lattice Structure

Underlying every Boolean algebra B is a partially ordered set or poset (B,≤). The partial order relation is defined by xy just when x = xy, or equivalently when y = xy. Given a set X of elements of a Boolean algebra, an upper bound on X is an element y such that for every element x of X, xy, while a lower bound on X is an element y such that for every element x of X, yx.

A sup (supremum) of X is a least upper bound on X, namely an upper bound on X that is less or equal to every upper bound on X. Dually an inf (infimum) of X is a greatest lower bound on X. The sup of x and y always exists in the underlying poset of a Boolean algebra, being xy, and likewise their inf exists, namely xy. The empty sup is 0 (the bottom element) and the empty inf is 1 (top). It follows that every finite set has both a sup and an inf. Infinite subsets of a Boolean algebra may or may not have a sup and/or an inf; in a power set algebra they always do.

Any poset (B,≤) such that every pair x,y of elements has both a sup and an inf is called a lattice. We write xy for the sup and xy for the inf. The underlying poset of a Boolean algebra always forms a lattice. The lattice is said to be distributive when x∧(yz) = (xy)∨(xz), or equivalently when x∨(yz) = (xy)∧(xz), since either law implies the other in a lattice. These are laws of Boolean algebra whence the underlying poset of a Boolean algebra forms a distributive lattice.

Given a lattice with a bottom element 0 and a top element 1, a pair x,y of elements is called complementary when xy = 0 and xy = 1, and we then say that y is a complement of x and vice versa. Any element x of a distributive lattice with top and bottom can have at most one complement. When every element of a lattice has a complement the lattice is called complemented. It follows that in a complemented distributive lattice, the complement of an element always exists and is unique, making complement a unary operation. Furthermore every complemented distributive lattice forms a Boolean algebra, and conversely every Boolean algebra forms a complemented distributive lattice. This provides an alternative definition of a Boolean algebra, namely as any complemented distributive lattice. Each of these three properties can be axiomatized with finitely many equations, whence these equations taken together constitute a finite axiomatization of the equational theory of Boolean algebras.

In a class of algebras defined as all the models of a set of equations, it is usually the case that some algebras of the class satisfy more equations than just those needed to qualify them for the class. The class of Boolean algebras is unusual in that, with a single exception, every Boolean algebra satisfies exactly the Boolean identities and no more. The exception is the one-element Boolean algebra, which necessarily satisfies every equation, even x = y, and is therefore sometimes referred to as the inconsistent Boolean algebra.

Read more about this topic:  Boolean Algebras Canonically Defined

Famous quotes containing the words underlying and/or structure:

    Sport in the sense of a mass-spectacle, with death to add to the underlying excitement, comes into existence when a population has been drilled and regimented and depressed to such an extent that it needs at least a vicarious participation in difficult feats of strength or skill or heroism in order to sustain its waning life-sense.
    Lewis Mumford (1895–1990)

    Why does philosophy use concepts and why does faith use symbols if both try to express the same ultimate? The answer, of course, is that the relation to the ultimate is not the same in each case. The philosophical relation is in principle a detached description of the basic structure in which the ultimate manifests itself. The relation of faith is in principle an involved expression of concern about the meaning of the ultimate for the faithful.
    Paul Tillich (1886–1965)