Boeing X-20 Dyna-Soar - Development

Development

On 24 October 1957, the USAF Air Research and Development Command issued a proposal for a "Hypersonic Glide Rocket Weapon System" (Weapons System 464L): Dyna Soar. The proposal drew together the existing boost-glide proposals, as the USAF believed a single vehicle could be designed to carry out all the bombing and reconnaissance tasks intended for the separate studies, and act as successor to the X-15 research program. The Dyna-Soar program was to be conducted in three stages: a research vehicle (Dyna-Soar I), a reconnaissance vehicle (Dyna-Soar II, previously Brass Bell), and a vehicle that added strategic bombing capability (Dyna-Soar III, previously Robo). The first glide tests for Dyna-Soar I were expected to be carried out in 1963, followed by powered flights, reaching Mach 18, the following year. A robotic glide missile was to be deployed in 1968, with the fully operational weapons system (Dyna-Soar III) expected by 1974.

In March 1958, nine U.S. aerospace companies tendered for the Dyna-Soar contract. Of these, the field narrowed to proposals from Bell and Boeing. Even though Bell had the advantage of six years' worth of design studies, the contract for the spaceplane was awarded to Boeing in June 1959 (by which time their original design had changed markedly and now closely resembled what Bell had submitted). In late 1961, the Titan III was eventually finalized as the launch vehicle. The Dyna-Soar was to be launched from Cape Canaveral Air Force Station, Florida.

Read more about this topic:  Boeing X-20 Dyna-Soar

Famous quotes containing the word development:

    There are two things which cannot be attacked in front: ignorance and narrow-mindedness. They can only be shaken by the simple development of the contrary qualities. They will not bear discussion.
    John Emerich Edward Dalberg, 1st Baron Acton (1834–1902)

    I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.
    Gottlob Frege (1848–1925)

    John B. Watson, the most influential child-rearing expert [of the 1920s], warned that doting mothers could retard the development of children,... Demonstrations of affection were therefore limited. “If you must, kiss them once on the forehead when they say goodnight. Shake hands with them in the morning.”
    Sylvia Ann Hewitt (20th century)