Blowing Up - Related Constructions

Related Constructions

In the blow-up of Cn described above, there was nothing essential about the use of complex numbers; blow-ups can be performed over any field. For example, the real blow-up of R2 at the origin results in the Möbius strip; correspondingly, the blow-up of the two-sphere S2 results in the real projective plane.

Deformation to the normal cone is a blow-up technique used to prove many results in algebraic geometry. Given a scheme X and a closed subscheme V, one blows up

Then

is a fibration. The general fiber is naturally isomorphic to X, while the central fiber is a union of two schemes: one is the blow-up of X along V, and the other is the normal cone of V with its fibers completed to projective spaces.

Blow-ups can also be performed in the symplectic category, by endowing the symplectic manifold with a compatible almost complex structure and proceeding with a complex blow-up. This makes sense on a purely topological level; however, endowing the blow-up with a symplectic form requires some care, because one cannot arbitrarily extend the symplectic form across the exceptional divisor E. One must alter the symplectic form in a neighborhood of E, or perform the blow-up by cutting out a neighborhood of Z and collapsing the boundary in a well-defined way. This is best understood using the formalism of symplectic cutting, of which symplectic blow-up is a special case. Symplectic cutting, together with the inverse operation of symplectic summation, is the symplectic analogue of deformation to the normal cone along a smooth divisor.

Read more about this topic:  Blowing Up

Famous quotes containing the word related:

    In the middle years of childhood, it is more important to keep alive and glowing the interest in finding out and to support this interest with skills and techniques related to the process of finding out than to specify any particular piece of subject matter as inviolate.
    Dorothy H. Cohen (20th century)