Blowing Up Points in Complex Space
Let Z be the origin in n-dimensional complex space, Cn. That is, Z is the point where the n coordinate functions simultaneously vanish. Let Pn - 1 be (n - 1)-dimensional complex projective space with homogeneous coordinates . Let be the subset of Cn × Pn - 1 that satisfies simultaneously the equations for i, j = 1, ..., n. The projection
naturally induces a holomorphic map
This map π (or, often, the space ) is called the blow-up (variously spelled blow up or blowup) of Cn.
The exceptional divisor E is defined as the inverse image of the blow-up locus Z under π. It is easy to see that
is a copy of projective space. It is an effective divisor. Away from E, π is an isomorphism between and Cn \ Z; it is a birational map between and Cn.
Read more about this topic: Blowing Up
Famous quotes containing the words blowing, points, complex and/or space:
“But the word Miracle, as pronounced by Christian churches, gives a false impression; it is Monster. It is not one with the blowing clover and falling rain.”
—Ralph Waldo Emerson (18031882)
“Wonderful Force of Public Opinion! We must act and walk in all points as it prescribes; follow the traffic it bids us, realise the sum of money, the degree of influence it expects of us, or we shall be lightly esteemed; certain mouthfuls of articulate wind will be blown at us, and this what mortal courage can front?”
—Thomas Carlyle (17951881)
“It would be naive to think that peace and justice can be achieved easily. No set of rules or study of history will automatically resolve the problems.... However, with faith and perseverance,... complex problems in the past have been resolved in our search for justice and peace. They can be resolved in the future, provided, of course, that we can think of five new ways to measure the height of a tall building by using a barometer.”
—Jimmy Carter (James Earl Carter, Jr.)
“Why not a space flower? Why do we always expect metal ships?”
—W.D. Richter (b. 1945)