Blancmange Curve - Integrating The Blancmange Curve

Integrating The Blancmange Curve

Given that the integral of from 0 to 1 is 1/2, the identity allows the integral over any interval to be computed by the following relation. The computation is recursive with computing time on the order of log of the accuracy required.


\begin{align}
I(x) &= \int_0^x{\rm blanc}(x)\,dx,\\
I(x) &=\begin{cases}
1/2+I(x-1) & \text{if }x \geq 1\\
1/2-I(1-x) & \text{if }1/2 < x < 1 \\
I(2x)/4+x^2/2 & \text{if } 0 \leq x \leq 1/2 \\
-I(-x) & \text{if } x < 0
\end{cases} \\
\int_a^b{\rm blanc}(x)\,dx &= I(b) - I(a).
\end{align}

Read more about this topic:  Blancmange Curve

Famous quotes containing the word curve:

    Nothing ever prepares a couple for having a baby, especially the first one. And even baby number two or three, the surprises and challenges, the cosmic curve balls, keep on coming. We can’t believe how much children change everything—the time we rise and the time we go to bed; the way we fight and the way we get along. Even when, and if, we make love.
    Susan Lapinski (20th century)