BKL Singularity - Conclusions

Conclusions

BKL describe singularities in the cosmologic solution of Einstein equations that have a complicated oscillatory character. Although this singularity was studied primarily on special homogeneous models, there are convincing reasons to assume that singularities in the general solution of Einstein equations have the same characteristics; this circumstance makes the BKL model important for cosmology.

A basis for such statement is the fact that the oscillatory mode in the approach to singularity is caused by the single perturbation that also causes instability in the generalized Kasner solution. A confirmation of the generality of the model is the analytic construction for long era with small oscillations. Although this latter behavior is not a necessary element of metric evolution close to the singularity, it has all principal qualitative properties: metric oscillation in two spacial dimensions and monotonous change in the third dimension with a certain perturbation of this mode at the end of some time interval. However, the transitions between Kasner epochs in the general case of non-homogeneous spacial metric have not been elucidated in details.

The problem connected with the possible limitations upon space geometry caused by the singularity was left aside for further study. It is clear from the outset, however, that the original BKL model is applicable to both finite or infinite space; this is evidenced by the existence of oscillatory singularity models for both closed and open spacetimes.

The oscillatory mode of the approach to singularity gives a new aspect to the term 'finiteness of time'. Between any finite moment of the world time t and the moment t = 0 there is an infinite number of oscillations. In this sense, the process acquires an infinite character. Instead of time t, a more adequate variable for its description is ln t by which the process is extended to −∞.

BKL consider metric evolution in the direction of decreasing time. The Einstein equations are symmetric in respect to the time sign so that a metric evolution in the direction of increasing time is equally possible. However, these two cases are fundamentally different because past and future are not equivalent in the physical sense. Future singularity can be physically meaningful only if it is possible at arbitrary initial conditions existing in a previous moment. Matter distribution and fields in some moment in the evolution of Universe do not necessarily correspond to the specific conditions required for the existence of a given special solution to the Einstein equations.

The choice of solutions corresponding to the real world is related to profound physical requirements which is impossible to find using only the existing relativity theory and which can be found as a result of future synthesis of physical theories. Thus, it may turn out that this choice singles out some special (e.g., isotropic) type of singularity. Nevertheless, it is more natural to assume that because of its general character, the oscillatory mode should be the main characteristic of the initial evolutionary stages.

In this respect, of considerable interest is the property of the model, shown by Misner, related to propagation of light signals. In the isotropic model, a "light horizon" exists, meaning that for each moment of time, there is some longest distance, at which exchange of light signals and, thus, a causal connection, is impossible: the signal cannot reach such distances for the time since the singularity t = 0.

Signal propagation is determined by the equation ds = 0. In the isotropic model near the singularity t = 0 the interval element is ds2 = dt2 — 2t, where is a time-independent spatial differential form. Substituting t = η2/2 yields

(eq. 127)

The "distance" Δ reached by the signal is

(eq. 128)

Since η, like t, runs through values starting from 0, up to the "moment" η signals can propagate only at the distance Δ ≤ η which fixes the farthest distance to the horizon.

The existence of a light horizon in the isotropic model poses a problem in the understanding of the origin of the presently observed isotropy in the relic radiation. According to the isotropic model, the observed isotropy means isotropic properties of radiation that comes to the observer from such regions of space that can not be causally connected with each other. The situation in the oscillatory evolution model near the singularity can be different.

For example, in the homogeneous model for Type IX space, a signal is propagated in a direction in which for a long era, scales change by a law close to ~ t. The square of the distance element in this direction is dl2 = t2, and the respective element of the four-dimensional interval is ds2 = dt2 − t2. The substitution t = еη puts this in the form

(eq. 129)

and for the signal propagation one has equation of the type eq. 128 again. The important difference is that the variable η runs now through values starting from −∞ (if metric eq. 129 is valid for all t starting from t = 0).

Therefore, for each given "moment" η are found intermediate intervals Δη sufficient for the signal to cover each finite distance.

In this way, during a long era a light horizon is opened in a given space direction. Although the duration of each long era is still finite, during the course of the world evolution eras change an infinite number of times in different space directions. This circumstance makes one expect that in this model a causal connection between events in the whole space is possible. Because of this property, Misner named this model «mixmaster universe» by a brand name of a dough-blending machine.

As time passes and one goes away from the singularity, the effect of matter on metric evolution, which was insignificant at the early stages of evolution, gradually increases and eventually becomes dominant. It can be expected that this effect will lead to a gradual "isotropisation" of space as a result of which its characteristics come closer to the Friedman model which adequately describes the present state of the Universe.

Finally, BKL pose the problem about the feasibility of considering a "singular state" of a world with infinitely dense matter on the basis of the existing relativity theory. The physical application of the Einstein equations in their present form in these conditions can be made clear only in the process of a future synthesis of physical theories and in this sense the problem can not be solved at present.

It is important that the gravitational theory itself does not lose its logical cohesion (i.e., does not lead to internal controversies) at whatever matter densities. In other words, this theory is not limited by the conditions that it imposes, which could make logically inadmissible and controversial its application at very large densities; limitations could, in principle, appear only as a result of factors that are "external" to the gravitational theory. This circumstance makes the study of singularities in cosmological models formally acceptable and necessary in the frame of existing theory.

Read more about this topic:  BKL Singularity

Famous quotes containing the word conclusions:

    What is the good of drawing conclusions from experience? I don’t deny we sometimes draw the right conclusions, but don’t we just as often draw the wrong ones?
    —G.C. (Georg Christoph)

    That which is required in order to the attainment of accurate conclusions respecting the essence of the Beautiful is nothing more than earnest, loving, and unselfish attention to our impressions of it.
    John Ruskin (1819–1900)

    Life is the art of drawing sufficient conclusions from insufficient premises.
    Samuel Butler (1835–1902)