Three Dimensions
In three dimensions the geometric product of two vectors is
This can be split into the symmetric, scalar valued, interior product and the antisymmetric, bivector valued, exterior product:
In three dimensions all bivectors are simple and so the result of an exterior product. The unit bivectors e23, e31 and e12 form a basis for the space of bivectors Λ2ℝ3, which itself a three dimensional linear space. So if a general bivector is:
they can be added like vectors
while when multiplied they produce the following
which can be split into symmetric scalar and antisymmetric bivector parts as follows
The exterior product of two bivectors in three dimensions is zero.
A bivector B can be written as the product of its magnitude and a unit bivector, so writing β for |B| and using the Taylor series for the exponential map it can be shown that
This is another version of Euler's formula, but with a general bivector in three dimensions. Unlike in two dimensions bivectors are not commutative so properties that depend on commutativity do not apply in three dimensions. For example in general eA + B ≠ eAeB in three (or more) dimensions.
The full geometric algebra in three dimensions, Cℓ3(ℝ), has basis (1, e1, e2, e3, e23, e31, e12, e123). The element e123 is a trivector and the pseudoscalar for the geometry. Bivectors in three dimensions are sometimes identified with pseudovectors to which they are related, as discussed below.
Read more about this topic: Bivector
Famous quotes containing the word dimensions:
“Is it true or false that Belfast is north of London? That the galaxy is the shape of a fried egg? That Beethoven was a drunkard? That Wellington won the battle of Waterloo? There are various degrees and dimensions of success in making statements: the statements fit the facts always more or less loosely, in different ways on different occasions for different intents and purposes.”
—J.L. (John Langshaw)
“Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?”
—bell hooks (b. c. 1955)