Biophoton - Hypothesized Involvement in Cellular Communication

Hypothesized Involvement in Cellular Communication

In the 1970s the then assistant professor Fritz-Albert Popp, and his research group, at the University of Marburg (Germany) showed that the spectral distribution of the emission fell over a wide range of wavelengths, from 200 to 800 nm. Popp proposed that the radiation might be both semi-periodic and coherent.

Russian, German, and other biophotonics experts, often adopting the term "biophotons" from Popp, have theorized, like Gurwitsch, that they may be involved in various cell functions, such as mitosis, or even that they may be produced and detected by the DNA in the cell nucleus. In 1974 Dr. V.P.Kaznacheyev announced that his research team in Novosibirsk had detected intercellular communication by means of these rays. Until 1980s, Kaznacheyev and his team carried out about 12 000 experiments. Details of experiments are described in his book (in Russian).

Proponents additionally claim that studies have shown that injured cells will emit a higher biophoton rate than normal cells and that organisms with illnesses will likewise emit a brighter light, which has been interpreted as implying a sort of distress signal. These ideas tend to support Gurwitsch's original idea that biophotons may be important for the development of larger structures such as organs and organisms.

However injured cells are under higher levels of oxidative stress, which ultimately is the source of the light, and whether this constitutes a "distress signal" or simply a background chemical process is yet to be demonstrated. The difficulty of teasing out the effects of any supposed biophotons amid the other numerous chemical interactions between cells makes it difficult to devise a testable hypothesis. Most organisms are bathed in relatively high-intensity light that ought to swamp any signaling effect, although biophoton signaling might manifest through temporal patterns of distinct wavelengths or could mainly be used in deep tissues hidden from daylight (such as the human brain, which contains photoreceptor proteins). A recent review article discusses various published theories on this kind of signaling and identifies around 30 experimental scientific articles in English in the past 30 years which prove electromagnetic cellular interactions.

Direct illumination of the brain via the ear canal as a treatment for seasonal affective disorder is being researched by Valkee Ltd. and University of Oulu.

Read more about this topic:  Biophoton

Famous quotes containing the word involvement:

    What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesn’t mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.
    Laurence Steinberg (20th century)