Biometrics - Multi-biometric System

Multi-biometric System

Multi-biometric systems use multiple sensors or biometrics to overcome the limitations of unimodal biometric systems. For instance iris recognition systems can be compromised by aging irides and finger scanning systems by worn-out or cut fingerprints. While unimodal biometric systems are limited by the integrity of their identifier, it is unlikely that several unimodal systems will suffer from identical limitations. Multi-biometric obtain sets of information from the same marker (i.e., multiple images of an iris, or scans of the same finger) or information from different biometrics (requiring fingerprint scans and, using voice recognition, a spoken pass-code). Multi-biometric systems can integrate these unimodal systems sequentially, simultaneously, a combination thereof, or in series, which refer to sequential, parallel, hierarchical and serial integration modes, respectively. The interested reader is pointed to Choubisa for detailed tradeoffs of response time, accuracy, and costs between integration modes.

Broadly, the information fusion is divided into three parts, pre-mapping fusion, midst-mapping fusion, and post-mapping fusion/late fusion.In pre-mapping fusion information can be combined at sensor level or feature level. Sensor-level fusion can be mainly organized in three classes: (1) single sensor-multiple instances, (2) intra-class multiple sensors, and (3) inter-class multiple sensors. Feature-level fusion can be mainly organized in two categories: (1) intra-class and (2) inter-class. Intra-class is again classified into four subcategories: (a) Same sensor-same features, (b) Same sensor-different features, (c) Different sensors-same features, and (d) Different sensors-different features.

Read more about this topic:  Biometrics

Famous quotes containing the word system:

    Delight at having understood a very abstract and obscure system leads most people to believe in the truth of what it demonstrates.
    —G.C. (Georg Christoph)