Biomarker (medicine) - Disease-related Biomarkers and Drug-related Biomarkers

Disease-related Biomarkers and Drug-related Biomarkers

It is necessary to distinguish between disease-related and drug-related biomarkers. Disease-related biomarkers give an indication of the probable effect of treatment on patient (risk indicator or predictive biomarkers), if a disease already exists (diagnostic biomarker), or how such a disease may develop in an individual case regardless of the type of treatment (prognostic biomarker). Predictive biomarkers help to assess the most likely response to a particular treatment type, while prognostic markers shows the progression of disease with or without treatment. In contrast, drug-related biomarkers indicate whether a drug will be effective in a specific patient and how the patient’s body will process it.

In addition to long-known parameters, such as those included and objectively measured in a blood count, there are numerous novel biomarkers used in the various medical specialties. Currently, intensive work is taking place on the discovery and development of innovative and more effective biomarkers. These "new" biomarkers have become the basis for preventive medicine, meaning medicine that recognises diseases or the risk of disease early, and takes specific countermeasures to prevent the development of disease. Biomarkers are also seen as the key to personalised medicine, treatments individually tailored to specific patients for highly efficient intervention in disease processes. Often, such biomarkers indicate changes in metabolic processes.

The "classic" biomarker in medicine is a laboratory parameter that the doctor can use to help make decisions in making a diagnosis and selecting a course of treatment. For example, the detection of certain autoantibodies in patient blood is a reliable biomarker for autoimmune disease, and the detection of rheumatoid factors has been an important diagnostic marker for rheumatoid arthritis (RA) for over 50 years. For the diagnosis of this autoimmune disease the antibodies against the bodies own citrullinated proteins are of particular value. These ACPAs, (ACPA stands for Anti-citrullinated protein/peptide antibody) can be detected in the blood before the first symptoms of RA appear. They are thus highly valuable biomarkers for the early diagnosis of this autoimmune disease. In addition, they indicate if the disease threatens to be severe with serious damage to the bones and joints, which is an important tool for the doctor when providing a diagnosis and developing a treatment plan.

There are also more and more indications that ACPAs can be very useful in monitoring the success of treatment for RA. This would make possible the accurate use of modern treatments with biologicals. Physicians hope to soon be able to individually tailor rheumatoid arthritis treatments for each patient.

According to Häupl T. et al. prediction of response to treament will become the most important aim of biomarker research in medicine. With the growing number of new biological agents, there is increasing pressure to identify molecular parameters such as ACPAs that will not only guide the therapeutic decision but also help to define the most important targets for which new biological agents should be tested in clinical studies.

An NIH study group committed to the following definition in 1998: "a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention." In the past, biomarkers were primarily physiological indicators such as blood pressure or heart rate. More recently, biomarker is becoming a synonym for molecular biomarker, such as elevated prostate specific antigen as a molecular biomarker for prostate cancer, or using enzyme assays as liver function tests. There has recently been heightened interest in the relevance of biomarkers in oncology, including the role of KRAS in CRC and other EGFR-associated cancers. In patients whose tumors express the mutated KRAS gene, the KRAS protein, which forms part of the EGFR signaling pathway, is always ‘turned on’. This overactive EGFR signaling means that signaling continues downstream – even when the upstream signaling is blocked by an EGFR inhibitor, such as cetuximab (Erbitux) – and results in continued cancer cell growth and proliferation. Testing a tumor for its KRAS status (wild-type vs. mutant) helps to identify those patients who will benefit most from treatment with cetuximab.

Currently, effective treatment is available for only a small percentage of cancer patients. In addition, many cancer patients are diagnosed at a stage where the cancer has advanced too far to be treated. Biomarkers have the ability to greatly enhance cancer detection and the drug development process. In addition, biomarkers will enable physicians to develop individualized treatment plans for their cancer patients; thus allowing doctors to tailor drugs specific to their patient's tumor type. By doing so, drug response rate will improve, drug toxicity will be limited and costs associated with testing various therapies and the ensuing treatment for side effects will decrease.

Biomarkers also cover the use of molecular indicators of environmental exposure in epidemiologic studies such as human papilloma virus or certain markers of tobacco exposure such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). To date no biomarkers have been established for SCCHN.

Read more about this topic:  Biomarker (medicine)