Energy Costs For Production
Various researchers have undertaken extensive life cycle assessments of biodegradable polymers to determine whether these materials are more energy efficient than polymers made by conventional fossil fuel-based means. Research done by Gerngross, et al. estimates that the fossil fuel energy required to produce a kilogram of polyhydroxyalkanoate (PHA) is 50.4 MJ/kg, which coincides with another estimate by Akiyama, et al., who estimate a value between 50-59 MJ/kg. This information does not take into account the feedstock energy, which can be obtained from non-fossil fuel based methods. Polylactide (PLA) was estimated to have a fossil fuel energy cost of 54-56.7 from two sources, but recent developments in the commercial production of PLA by NatureWorks has eliminated some dependence fossil fuel based energy by supplanting it with wind power and biomass-driven strategies. They report making a kilogram of PLA with only 27.2 MJ of fossil fuel-based energy and anticipate that this number will drop to 16.6 MJ/kg in their next generation plants. In contrast, polypropylene and high density polyethylene require 85.9 and 73.7 MJ/kg respectively, but these values include the embedded energy of the feedstock because it is based on fossil fuel.
Gerngross reports a 2.65 total fossil fuel energy equivalent (FFE) required to produce a single kilogram of PHA, while polypropylene only requires 2.2 kg FFE. Gerngross assesses that the decision to proceed forward with any biodegradable polymer alternative will need to take into account the priorities of society with regard to energy, environment, and economic cost.
Furthermore, it is important to realize the youth of alternative technologies. Technology to produce PHA, for instance, is still in development today, and energy consumption can be further reduced by eliminating the fermentation step, or by utilizing food waste as feedstock. The use of alternative crops other than corn, such as sugar cane from Brazil, are expected to lower energy requirements- manufacturing of PHAs by fermentation in Brazil enjoys a favorable energy consumption scheme where bagasse is used as source of renewable energy.
Many biodegradable polymers that come from renewable resources (i.e., starch-based, PHA, PLA) also compete with food production, as the primary feedstock is currently corn. For the US to meet its current output of plastics production with BPs, it would require 1.62 square meters per kilogram produced. While this space requirement could be feasible, it is always important to consider how much impact this large scale production could have on food prices and the opportunity cost of using land in this fashion versus alternatives.
Read more about this topic: Biodegradable Plastics
Famous quotes containing the words energy, costs and/or production:
“Because humans are not alone in exhibiting such behaviorbees stockpile royal jelly, birds feather their nests, mice shred paperits possible that a pregnant woman who scrubs her house from floor to ceiling [just before her baby is born] is responding to a biological imperative . . . . Of course there are those who believe that . . . the burst of energy that propels a pregnant woman to clean her house is a perfectly natural response to their mothers impending visit.”
—Mary Arrigo (20th century)
“When over Catholics the ocean rolls,
They must wait several weeks before a mass
Takes off one peck of purgatorial coals,
Because, till people know whats come to pass,
They wont lay out their money on the dead
It costs three francs for every mass thats said.”
—George Gordon Noel Byron (17881824)
“The society based on production is only productive, not creative.”
—Albert Camus (19131960)