Biodegradable Plastic - Energy Costs For Production

Energy Costs For Production

Various researchers have undertaken extensive life cycle assessments of biodegradable polymers to determine whether these materials are more energy efficient than polymers made by conventional fossil fuel-based means. Research done by Gerngross, et al. estimates that the fossil fuel energy required to produce a kilogram of polyhydroxyalkanoate (PHA) is 50.4 MJ/kg, which coincides with another estimate by Akiyama, et al., who estimate a value between 50-59 MJ/kg. This information does not take into account the feedstock energy, which can be obtained from non-fossil fuel based methods. Polylactide (PLA) was estimated to have a fossil fuel energy cost of 54-56.7 from two sources, but recent developments in the commercial production of PLA by NatureWorks has eliminated some dependence fossil fuel based energy by supplanting it with wind power and biomass-driven strategies. They report making a kilogram of PLA with only 27.2 MJ of fossil fuel-based energy and anticipate that this number will drop to 16.6 MJ/kg in their next generation plants. In contrast, polypropylene and high density polyethylene require 85.9 and 73.7 MJ/kg respectively, but these values include the embedded energy of the feedstock because it is based on fossil fuel.

Gerngross reports a 2.65 total fossil fuel energy equivalent (FFE) required to produce a single kilogram of PHA, while polypropylene only requires 2.2 kg FFE. Gerngross assesses that the decision to proceed forward with any biodegradable polymer alternative will need to take into account the priorities of society with regard to energy, environment, and economic cost.

Furthermore, it is important to realize the youth of alternative technologies. Technology to produce PHA, for instance, is still in development today, and energy consumption can be further reduced by eliminating the fermentation step, or by utilizing food waste as feedstock. The use of alternative crops other than corn, such as sugar cane from Brazil, are expected to lower energy requirements- manufacturing of PHAs by fermentation in Brazil enjoys a favorable energy consumption scheme where bagasse is used as source of renewable energy.

Many biodegradable polymers that come from renewable resources (i.e., starch-based, PHA, PLA) also compete with food production, as the primary feedstock is currently corn. For the US to meet its current output of plastics production with BPs, it would require 1.62 square meters per kilogram produced. While this space requirement could be feasible, it is always important to consider how much impact this large scale production could have on food prices and the opportunity cost of using land in this fashion versus alternatives.

Read more about this topic:  Biodegradable Plastic

Famous quotes containing the words energy, costs and/or production:

    The very presence of guilt, let alone its tenacity, implies imbalance: Something, we suspect, is getting more of our energy than warrants, at the expense of something else, we suspect, that deserves more of our energy than we’re giving.
    Melinda M. Marshall (20th century)

    To exercise power costs effort and demands courage. That is why so many fail to assert rights to which they are perfectly entitled—because a right is a kind of power but they are too lazy or too cowardly to exercise it. The virtues which cloak these faults are called patience and forbearance.
    Friedrich Nietzsche (1844–1900)

    The growing of food and the growing of children are both vital to the family’s survival.... Who would dare make the judgment that holding your youngest baby on your lap is less important than weeding a few more yards in the maize field? Yet this is the judgment our society makes constantly. Production of autos, canned soup, advertising copy is important. Housework—cleaning, feeding, and caring—is unimportant.
    Debbie Taylor (20th century)