Big O Notation - Orders of Common Functions

Orders of Common Functions

Further information: Time complexity#Table of common time complexities

Here is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, c is a constant and n increases without bound. The slower-growing functions are generally listed first.

Notation Name Example
constant Determining if a number is even or odd; using a constant-size lookup table
double logarithmic Finding an item using interpolation search in a sorted array of uniformly distributed values.
logarithmic Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.
fractional power Searching in a kd-tree
linear Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry.
n log-star n Performing triangulation of a simple polygon using Seidel's algorithm. (Note log^*(n) =
\begin{cases} 0, & \text{if }n \leq 1 \\ 1 + \log^*(\log n), & \text{if }n>1
\end{cases}
linearithmic, loglinear, or quasilinear Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort
quadratic Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), Shell sort, quicksort (worst case), selection sort or insertion sort
polynomial or algebraic Tree-adjoining grammar parsing; maximum matching for bipartite graphs

L-notation or sub-exponential Factoring a number using the quadratic sieve or number field sieve
exponential Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search
factorial Solving the traveling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with expansion by minors.

The statement is sometimes weakened to to derive simpler formulas for asymptotic complexity. For any and, is a subset of for any, so may be considered as a polynomial with some bigger order.

Read more about this topic:  Big O Notation

Famous quotes containing the words orders of, orders, common and/or functions:

    Your money’s no good here. Orders of the house.
    Stanley Kubrick (b. 1928)

    One cannot be a good historian of the outward, visible world without giving some thought to the hidden, private life of ordinary people; and on the other hand one cannot be a good historian of this inner life without taking into account outward events where these are relevant. They are two orders of fact which reflect each other, which are always linked and which sometimes provoke each other.
    Victor Hugo (1802–1885)

    What chiefly distinguishes the daily press of the United States from the press of all other countries is not its lack of truthfulness or even its lack of dignity and honor, for these deficiencies are common to the newspapers everywhere, but its incurable fear of ideas, its constant effort to evade the discussion of fundamentals by translating all issues into a few elemental fears, its incessant reduction of all reflection to mere emotion. It is, in the true sense, never well-informed.
    —H.L. (Henry Lewis)

    The English masses are lovable: they are kind, decent, tolerant, practical and not stupid. The tragedy is that there are too many of them, and that they are aimless, having outgrown the servile functions for which they were encouraged to multiply. One day these huge crowds will have to seize power because there will be nothing else for them to do, and yet they neither demand power nor are ready to make use of it; they will learn only to be bored in a new way.
    Cyril Connolly (1903–1974)