Bew - Background

Background

Because statements of a formal theory are written in symbolic form, it is possible to mechanically verify that a formal proof from a finite set of axioms is valid. This task, known as automatic proof verification, is closely related to automated theorem proving. The difference is that instead of constructing a new proof, the proof verifier simply checks that a provided formal proof (or, in instructions that can be followed to create a formal proof) is correct. This process is not merely hypothetical; systems such as Isabelle or Coq are used today to formalize proofs and then check their validity.

Many theories of interest include an infinite set of axioms, however. To verify a formal proof when the set of axioms is infinite, it must be possible to determine whether a statement that is claimed to be an axiom is actually an axiom. This issue arises in first order theories of arithmetic, such as Peano arithmetic, because the principle of mathematical induction is expressed as an infinite set of axioms (an axiom schema).

A formal theory is said to be effectively generated if its set of axioms is a recursively enumerable set. This means that there is a computer program that, in principle, could enumerate all the axioms of the theory without listing any statements that are not axioms. This is equivalent to the existence of a program that enumerates all the theorems of the theory without enumerating any statements that are not theorems. Examples of effectively generated theories with infinite sets of axioms include Peano arithmetic and Zermelo–Fraenkel set theory.

In choosing a set of axioms, one goal is to be able to prove as many correct results as possible, without proving any incorrect results. A set of axioms is complete if, for any statement in the axioms' language, either that statement or its negation is provable from the axioms. A set of axioms is (simply) consistent if there is no statement such that both the statement and its negation are provable from the axioms. In the standard system of first-order logic, an inconsistent set of axioms will prove every statement in its language (this is sometimes called the principle of explosion), and is thus automatically complete. A set of axioms that is both complete and consistent, however, proves a maximal set of non-contradictory theorems. Gödel's incompleteness theorems show that in certain cases it is not possible to obtain an effectively generated, complete, consistent theory.

Read more about this topic:  Bew

Famous quotes containing the word background:

    Silence is the universal refuge, the sequel to all dull discourses and all foolish acts, a balm to our every chagrin, as welcome after satiety as after disappointment; that background which the painter may not daub, be he master or bungler, and which, however awkward a figure we may have made in the foreground, remains ever our inviolable asylum, where no indignity can assail, no personality can disturb us.
    Henry David Thoreau (1817–1862)

    They were more than hostile. In the first place, I was a south Georgian and I was looked upon as a fiscal conservative, and the Atlanta newspapers quite erroneously, because they didn’t know anything about me or my background here in Plains, decided that I was also a racial conservative.
    Jimmy Carter (James Earl Carter, Jr.)

    ... every experience in life enriches one’s background and should teach valuable lessons.
    Mary Barnett Gilson (1877–?)