Bevatron - Antiprotons

Antiprotons

At the time the Bevatron was designed, it was strongly suspected but not known, that each particle had a corresponding anti-particle of opposite charge, identical in all other respects, a property known as charge symmetry. The anti-electron, or positron had been first observed in the early 1930s, and theoretically understood as a consequence of the Dirac equation at about the same time. Following World War II, positive and negative muons and pions were observed in cosmic-ray interactions seen in cloud chambers and stacks of nuclear photographic emulsions. The Bevatron was built to be energetic enough to create antiprotons, and thus test the hypothesis that every particle has a corresponding anti-particle. The antineutron was discovered soon thereafter by Oreste Piccioni and co-workers, also at the Bevatron. Confirmation of the charge symmetry conjecture in 1955 led to the Nobel Prize for physics being awarded to Emilio Segrè and Owen Chamberlain in 1960.

Shortly after the Bevatron came into use, it was recognized that parity was not conserved in the weak interactions, which led to resolution of the tau-theta puzzle, the understanding of strangeness, and the establishment of CPT symmetry as a basic feature of relativistic quantum field theories.

Read more about this topic:  Bevatron