Beryllium - History

History

The mineral beryl, which contains beryllium, has been used at least since the Ptolemaic dynasty of Egypt. In the first century CE, Roman naturalist Pliny the Elder mentioned in his encyclopedia Natural History that beryl and emerald ("smaragdus") were similar. The Papyrus Graecus Holmiensis, written in the third or fourth century CE, contains notes on how to prepare artificial emerald and beryl.

Early analyses of emeralds and beryls by Martin Heinrich Klaproth, Torbern Olof Bergman, Franz Karl Achard, and Johann Jakob Bindheim always yielded similar elements, leading to the fallacious conclusion that both substances are aluminium silicates. Mineralogist René Just Haüy discovered that both crystals are geometrically identical, and he asked chemist Louis-Nicolas Vauquelin for a chemical analysis.

In a 1797 paper read before the Annales de chimie et de physique, Vauquelin reported that he found a new "earth" by dissolving aluminium hydroxide from emerald and beryl in an additional alkali. Vauquelin named the new earth "glucina" for the sweet taste of some of its compounds. Klaproth preferred the name "beryllia" due to fact that yttria also formed sweet salts.

Friedrich Wöhler and Antoine Bussy independently isolated beryllium in 1828 by the chemical reaction of metallic potassium with beryllium chloride, as follows:

BeCl2 + 2 K → 2 KCl + Be

Using an alcohol lamp, Wöhler heated alternating layers of beryllium chloride and potassium in a wired-shut platinum crucible. The above reaction immediately took place and caused the crucible to become white hot. Upon cooling and washing the resulting gray-black powder he saw that it was made of fine particles with a dark metallic luster. The highly reactive potassium had been produced by the electrolysis of its compounds, a process discovered 21 years before. The chemical method using potassium yielded only small grains of beryllium from which no ingot of metal could be cast or hammered.

The direct electrolysis of a molten mixture of beryllium fluoride and sodium fluoride by Paul Lebeau in 1898 resulted in the first pure (99.5 to 99.8%) samples of beryllium. The first commercially-successful process for producing beryllium was developed in 1932 by Alfred Stock and Hans Goldschmidt. Their process involves the electrolysation of a mixture of beryllium fluorides and barium, which causes molten beryllium to collect on a water-cooled iron cathode.

A sample of beryllium was bombarded with alpha rays from the decay of radium in a 1932 experiment by James Chadwick that uncovered the existence of the neutron. This same method is used in one class of radioisotope-based laboratory neutron sources that produce 30 neutrons for every million α particles.

Beryllium production saw a rapid increase during World War II, due to the rising demand for hard beryllium-copper alloys and phosphors for fluorescent lights. Most early fluorescent lamps used zinc orthosilicate with varying content of beryllium to emit greenish light. Small additions of magnesium tungstate improved the blue part of the spectrum to yield an acceptable white light. Halophosphate-based phosphors replaced beryllium-based phosphors after beryllium was found to be toxic.

Electrolysis of a mixture of beryllium fluoride and sodium fluoride was used to isolate beryllium during the 19th century. The metal's high melting point makes this process more energy-consuming than corresponding processes used for the alkali metals. Early in the 20th century, the production of beryllium by the thermal decomposition of beryllium iodide was investigated following the success of a similar process for the production of zirconium, but this process proved to be uneconomical for volume production.

Pure beryllium metal did not become readily available until 1957, even though it had been used as an alloying metal to harden and toughen copper much earlier. Beryllium could be produced by reducing beryllium compounds such as beryllium chloride with metallic potassium or sodium. Currently most beryllium is produced by reducing beryllium fluoride with purified magnesium. The price on the American market for vacuum-cast beryllium ingots was about $338 per pound ($745 per kilogram) in 2001.

Between 1998 and 2008, the world's production of beryllium had decreased from 343 to about 200 tonnes, of which 176 tonnes (88%) came from the United States.

Read more about this topic:  Beryllium

Famous quotes containing the word history:

    Whenever we read the obscene stories, the voluptuous debaucheries, the cruel and torturous executions, the unrelenting vindictiveness, with which more than half the Bible is filled, it would be more consistent that we called it the word of a demon than the Word of God. It is a history of wickedness that has served to corrupt and brutalize mankind.
    Thomas Paine (1737–1809)

    This is the greatest week in the history of the world since the Creation, because as a result of what happened in this week, the world is bigger, infinitely.
    Richard M. Nixon (1913–1995)

    Gossip is charming! History is merely gossip. But scandal is gossip made tedious by morality.
    Oscar Wilde (1854–1900)