Bertrand's Box Paradox - Card Version

Card Version

Suppose there are three cards:

  • A black card that is black on both sides,
  • A white card that is white on both sides, and
  • A mixed card that is black on one side and white on the other.

All the cards are placed into a hat and one is pulled at random and placed on a table. The side facing up is black. What are the odds that the other side is also black?

The answer is that the other side is black with probability 2⁄3. However, common intuition suggests a probability of 1⁄2 either because there are two cards with black on them that this card could be, or because there are 3 white and 3 black sides and many people forget to eliminate the possibility of the "white card" in this situation (i.e. the card they flipped CANNOT be the "white card" because a black side was turned over).

In a survey of 53 Psychology freshmen taking an introductory probability course, 35 incorrectly responded 1⁄2; only 3 students correctly responded 2⁄3.

Another presentation of the problem is to say : pick a random card out of the three, what are the odds that it has the same color on the other side ? Since only one card is mixed and two have the same color on their sides, it is easier to understand that the probability is 2⁄3. Also note that saying that the color is black (or the coin is gold) instead of white doesn't matter since it is symmetric: the answer is the same for white. So is the answer for the generic question 'same color on both sides'.

Read more about this topic:  Bertrand's Box Paradox

Famous quotes containing the words card and/or version:

    In the game of “Whist for two,” usually called “Correspondence,” the lady plays what card she likes: the gentleman simply follows suit. If she leads with “Queen of Diamonds,” however, he may, if he likes, offer the “Ace of Hearts”: and, if she plays “Queen of Hearts,” and he happens to have no Heart left, he usually plays “Knave of Clubs.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)

    It is never the thing but the version of the thing:
    The fragrance of the woman not her self,
    Her self in her manner not the solid block,
    The day in its color not perpending time,
    Time in its weather, our most sovereign lord,
    The weather in words and words in sounds of sound.
    Wallace Stevens (1879–1955)