Approximating Continuous Functions
Let ƒ be a continuous function on the interval . Consider the Bernstein polynomial
It can be shown that
uniformly on the interval . This is a stronger statement than the proposition that the limit holds for each value of x separately; that would be pointwise convergence rather than uniform convergence. Specifically, the word uniformly signifies that
Bernstein polynomials thus afford one way to prove the Weierstrass approximation theorem that every real-valued continuous function on a real interval can be uniformly approximated by polynomial functions over R.
A more general statement for a function with continuous kth derivative is
where additionally
is an eigenvalue of Bn; the corresponding eigenfunction is a polynomial of degree k.
Read more about this topic: Bernstein Polynomial
Famous quotes containing the words continuous and/or functions:
“If an irreducible distinction between theatre and cinema does exist, it may be this: Theatre is confined to a logical or continuous use of space. Cinema ... has access to an alogical or discontinuous use of space.”
—Susan Sontag (b. 1933)
“In todays world parents find themselves at the mercy of a society which imposes pressures and priorities that allow neither time nor place for meaningful activities and relations between children and adults, which downgrade the role of parents and the functions of parenthood, and which prevent the parent from doing things he wants to do as a guide, friend, and companion to his children.”
—Urie Bronfenbrenner (b. 1917)