Bernstein Polynomial - Approximating Continuous Functions

Approximating Continuous Functions

Let ƒ be a continuous function on the interval . Consider the Bernstein polynomial

It can be shown that

uniformly on the interval . This is a stronger statement than the proposition that the limit holds for each value of x separately; that would be pointwise convergence rather than uniform convergence. Specifically, the word uniformly signifies that

Bernstein polynomials thus afford one way to prove the Weierstrass approximation theorem that every real-valued continuous function on a real interval can be uniformly approximated by polynomial functions over R.

A more general statement for a function with continuous kth derivative is

where additionally

is an eigenvalue of Bn; the corresponding eigenfunction is a polynomial of degree k.

Read more about this topic:  Bernstein Polynomial

Famous quotes containing the words continuous and/or functions:

    The problem, thus, is not whether or not women are to combine marriage and motherhood with work or career but how they are to do so—concomitantly in a two-role continuous pattern or sequentially in a pattern involving job or career discontinuities.
    Jessie Bernard (20th century)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)