Approximating Continuous Functions
Let ƒ be a continuous function on the interval . Consider the Bernstein polynomial
It can be shown that
uniformly on the interval . This is a stronger statement than the proposition that the limit holds for each value of x separately; that would be pointwise convergence rather than uniform convergence. Specifically, the word uniformly signifies that
Bernstein polynomials thus afford one way to prove the Weierstrass approximation theorem that every real-valued continuous function on a real interval can be uniformly approximated by polynomial functions over R.
A more general statement for a function with continuous kth derivative is
where additionally
is an eigenvalue of Bn; the corresponding eigenfunction is a polynomial of degree k.
Read more about this topic: Bernstein Polynomial
Famous quotes containing the words continuous and/or functions:
“The habit of common and continuous speech is a symptom of mental deficiency. It proceeds from not knowing what is going on in other peoples minds.”
—Walter Bagehot (18261877)
“Mark the babe
Not long accustomed to this breathing world;
One that hath barely learned to shape a smile,
Though yet irrational of soul, to grasp
With tiny fingerto let fall a tear;
And, as the heavy cloud of sleep dissolves,
To stretch his limbs, bemocking, as might seem,
The outward functions of intelligent man.”
—William Wordsworth (17701850)