Approximating Continuous Functions
Let ƒ be a continuous function on the interval . Consider the Bernstein polynomial
It can be shown that
uniformly on the interval . This is a stronger statement than the proposition that the limit holds for each value of x separately; that would be pointwise convergence rather than uniform convergence. Specifically, the word uniformly signifies that
Bernstein polynomials thus afford one way to prove the Weierstrass approximation theorem that every real-valued continuous function on a real interval can be uniformly approximated by polynomial functions over R.
A more general statement for a function with continuous kth derivative is
where additionally
is an eigenvalue of Bn; the corresponding eigenfunction is a polynomial of degree k.
Read more about this topic: Bernstein Polynomial
Famous quotes containing the words continuous and/or functions:
“We read poetry because the poets, like ourselves, have been haunted by the inescapable tyranny of time and death; have suffered the pain of loss, and the more wearing, continuous pain of frustration and failure; and have had moods of unlooked-for release and peace. They have known and watched in themselves and others.”
—Elizabeth Drew (18871965)
“Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.”
—Ralph Waldo Emerson (18031882)