Bernard Marshall Gordon - Professional Life - Employee

Employee

Bernie's first job after college was with Philco Corporation. He was there for a year, a long time in the fast-paced world of growing electronics innovation that followed the war. His career there was interrupted by a personal call from the young Presper Eckert, 28 at the time, who had heard about him from an MIT professor and wanted to interview him.

As a result, Bernie went to work at the Eckert-Mauchly Computer Corporation in an old building in Philadelphia. He had joined a group of young and irreverent engineers who were building the first commercial digital computer. At that time the digital computer was a new idea coming out of war-time military intelligence efforts. The first one had been devised to compute artillery firing tables, but was completed too late (1946) to impact the course of the war. Now Bernie found that he was to work on the development of UNIVAC, the world's first commercial digital computer. His co-workers were all in their 20's; however, the same might be said of many other entrepreneurs and project enthusiasts in the just-foming field of computers.

At this time, Bernie got his first indoctrination in entrpreneurial management from the receiving end. He said:

"The chief engineer was Jim Weiner who had come down from Raytheon. Jim ruled over us like a master sergeant and engendered in us reactionary passions . . . but he made us do our jobs."

Weiner in turn mirrored Eckert, of whom Bernie said:

"If in my later years I have myself developed a reputation for being a tough engineering task master, I am pleased to say — and I hope that he will be pleased by my saying it — that Eckert was responsible."

Eckert set Bernie to designing standard flip flops, standard gates, and other electronics for the computer. Bernie later said:

"He had allowed only a few working days to do this. I didn't know I couldn't do it, so I set out to do it."

Having done it, Bernie went on to design the crystal transducer system for the acoustic memories and then all of the memory system. Eckert and Weiner were tough masters. Bernie retained his delight at once seeing them make a worse mistake than any the engineers were punished for making:

"Jim Weiner established the rule that whenever anybody made a mistake such as putting a screw driver or a scope probe in the wrong place and blew up a diode, he would have to buy a Coca-Cola for all the employees of the company, approximately 30. However, one day Jim Weiner himself put his screw driver into the wrong place and blew up all 18,000 diodes! It made us all feel much better."

Bernie later had high praise for Eckert's methods and adopted them as a philosophy:

"He felt, I believe, that any engineer worth his salt should be able to design anything at any time, either electrical or mechanical. If he didn't know how to do it, then it was his responsibility to go out and learn how to do it."

Though highly influential on Bernie, the tutelage of Eckert was chronologically brief. After Sperry Rand Corporation bought Eckert-Mauchly, and the methods of large corporations began to replace those of Eckert, Bernie resigned and went to work for Laboratory for Electronics, a firm in the Boston area that was formed by individuals from the wartime Radiation Laboratory at MIT. There, he helped develop a Doppler navigating radar. It was the last work he would do as someone else's employee.

In the course of his radar investigations, Bernie met An Wang, another young innovator, who had just started Wang Laboratories, Inc. Bernie and An built and patented a sequenced number generator, the forerunner of all electronic dot matrix displays. It was used in the navigational computer on which Bernie was then working.

Read more about this topic:  Bernard Marshall Gordon, Professional Life