Benzodiazepine Withdrawal Syndrome - Mechanism and Pathophysiology

Mechanism and Pathophysiology

Main article: Benzodiazepine dependence#Mechanism See also: Alcohol withdrawal syndrome#Kindling, Kindling (sedative-hypnotic withdrawal), and Benzodiazepine#Mechanism of action

The neuroadaptive processes involved in tolerance, dependence, and withdrawal mechanisms implicate both the GABAergic and the glutamatergic systems. Gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter of the central nervous system; roughly one-quarter to one-third of synapses use GABA. GABA mediates the influx of chloride ions through ligand-gated chloride channels called GABAA receptors. When chloride enters the nerve cell, the cell membrane potential hyperpolarizes thereby inhibiting depolarization, or reduction in the firing rate of the post-synaptic nerve cell. Benzodiazepine potentiates the action of GABA, by binding a site between the α and γ subunits of the 5-subunit receptor thereby increasing the frequency of the GABA-gated chloride channel opening in the presence of GABA.

When potentiation is sustained by long-term use, neuroadaptations occur which result in decreased GABAergic response. What is certain, is that surface GABAA receptor protein levels are altered in response to benzodiazepine exposure, as is receptor turnover rate. The exact reason for the reduced responsiveness has not been elucidated but down-regulation of the number of receptors has only been observed at some receptor locations including in the pars reticulata of the substantia nigra; down-regulation of the number of receptors or internalization does not appear to be the main mechanism at other locations. Evidence exists for other hypotheses including changes in the receptor conformation, changes in turnover, recycling, or production rates, degree of phosphorylation and receptor gene expression, subunit composition, decreased coupling mechanisms between the GABA and benzodiazepine site, decrease in GABA production, and compensatory increased gutamatergic activity. A unified model hypothesis involves a combination of internalization of the receptor, followed by preferential degradation of certain receptor sub-units, which provides the nuclear activation for changes in receptor gene transcription.

It has been postulated that when benzodiazepines are cleared from the brain, these neuroadaptations are "unmasked", leading to unopposed excitability of the neuron. Glutamate is the most abundant excitatory neurotransmitter in the vertebrate nervous system. Increased glutamate excitatory activity during withdrawal may lead to sensitization or kindling of the CNS, possibly leading to worsening cognition and symptomatology and making each subsequent withdrawal period worse. Those who have a prior history of withdrawing from benzodiazepines are found to be less likely to succeed the next time around.

Read more about this topic:  Benzodiazepine Withdrawal Syndrome

Famous quotes containing the word mechanism:

    I’ve never known a Philadelphian who wasn’t a downright “character;” possibly a defense mechanism resulting from the dullness of their native habitat.
    Anita Loos (1888–1981)