Belief Propagation - Gaussian Belief Propagation (GaBP)

Gaussian Belief Propagation (GaBP)

Gaussian belief propagation is a variant of the belief propagation algorithm when the underlying distributions are Gaussian. The first work analyzing this special model was the seminal work of Weiss and Freeman

The GaBP algorithm solves the following marginalization problem:

where Z is a normalization constant, A is a symmetric positive definite matrix (inverse covariance matrix a.k.a. precision matrix) and b is the shift vector.

Equivalently, it can be shown that using the Gaussian model, the solution of the marginalization problem is equivalent to the MAP assignment problem:

This problem is also equivalent to the following minimization problem of the quadratic form:

Which is also equivalent to the linear system of equations

Convergence of the GaBP algorithm is easier to analyze (relatively to the general BP case) and there are two known sufficient convergence conditions. The first one was formulated by Weiss et al. in the year 2000, when the information matrix A is diagonally dominant. The second convergence condition was formulated by Johnson et al. in 2006, when the spectral radius of the matrix

where D = diag(A).

The GaBP algorithm was linked to the linear algebra domain, and it was shown that the GaBP algorithm can be viewed as an iterative algorithm for solving the linear system of equations Ax = b where A is the information matrix and b is the shift vector. The known convergence conditions of the GaBP algorithm are identical to the sufficient conditions of the Jacobi method. Empirically, the GaBP algorithm is shown to converge faster than classical iterative methods like the Jacobi method, the Gauss–Seidel method, successive over-relaxation, and others. Additionally, the GaBP algorithm is shown to be immune to numerical problems of the preconditioned conjugate gradient method

Read more about this topic:  Belief Propagation

Famous quotes containing the word belief:

    Hope is a pathological belief in the occurrence of the impossible.
    —H.L. (Henry Lewis)