Bayesian Experimental Design

Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as uncertainties in observations.

The theory of Bayesian experimental design is to a certain extent based on the theory for making optimal decisions under uncertainty. The aim when designing an experiment is to maximize the expected utility of the experiment outcome. The utility is most commonly defined in terms of a measure of the accuracy of the information provided by the experiment (e.g. the Shannon information or the negative variance), but may also involve factors such as the financial cost of performing the experiment. What will be the optimal experiment design depends on the particular utility criterion chosen.

Read more about Bayesian Experimental Design:  Mathematical Formulation

Famous quotes containing the words experimental and/or design:

    If we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask, Does it contain any abstract reasoning concerning quantity or number? No. Does it contain any experimental reasoning, concerning matter of fact and existence? No. Commit it then to flames: for it can contain nothing but sophistry and illusion.
    David Hume (1711–1776)

    Joe ... you remember I said you wouldn’t be cheated?... Nobody is really. Eventually all things work out. There’s a design in everything.
    Sidney Buchman (1902–1975)