Bayes Factor - Definition

Definition

The posterior probability Pr(M|D) of a model M given data D is given by Bayes' theorem:

The key data-dependent term Pr(D|M) is a likelihood, and represents the probability that some data is produced under the assumption of this model, M; evaluating it correctly is the key to Bayesian model comparison. The evidence is usually the normalizing constant or partition function of another inference, namely the inference of the parameters of model M given the data D.

Given a model selection problem in which we have to choose between two models, on the basis of observed data D, the plausibility of the two different models M1 and M2, parametrised by model parameter vectors and is assessed by the Bayes factor K given by

 K = \frac{\Pr(D|M_1)}{\Pr(D|M_2)}
= \frac{\int \Pr(\theta_1|M_1)\Pr(D|\theta_1,M_1)\,d\theta_1}
{\int \Pr(\theta_2|M_2)\Pr(D|\theta_2,M_2)\,d\theta_2}

where Pr(D|Mi) is called the marginal likelihood for model i.

If instead of the Bayes factor integral, the likelihood corresponding to the maximum likelihood estimate of the parameter for each model is used, then the test becomes a classical likelihood-ratio test. Unlike a likelihood-ratio test, this Bayesian model comparison does not depend on any single set of parameters, as it integrates over all parameters in each model (with respect to the respective priors). However, an advantage of the use of Bayes factors is that it automatically, and quite naturally, includes a penalty for including too much model structure. It thus guards against overfitting. For models where an explicit version of the likelihood is not available or too costly to evaluate numerically, approximate Bayesian computation can be used for model selection in a Bayesian framework.

Other approaches are:

  • to treat model comparison as a decision problem, computing the expected value or cost of each model choice;
  • to use minimum message length (MML).

Read more about this topic:  Bayes Factor

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)