Base Flow (random Dynamical Systems) - Definition

Definition

In the definition of a random dynamical system, one is given a family of maps on a probability space . The measure-preserving dynamical system is known as the base flow of the random dynamical system. The maps are often known as shift maps since they "shift" time. The base flow is often ergodic.

The parameter may be chosen to run over

  • (a two-sided continuous-time dynamical system);
  • (a one-sided continuous-time dynamical system);
  • (a two-sided discrete-time dynamical system);
  • (a one-sided discrete-time dynamical system).

Each map is required

  • to be a -measurable function: for all,
  • to preserve the measure : for all, .

Furthermore, as a family, the maps satisfy the relations

  • , the identity function on ;
  • for all and for which the three maps in this expression are defined. In particular, if exists.

In other words, the maps form a commutative monoid (in the cases and ) or a commutative group (in the cases and ).

Read more about this topic:  Base Flow (random Dynamical Systems)

Famous quotes containing the word definition:

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)