Baryogenesis - Baryogenesis Within The Standard Model

Baryogenesis Within The Standard Model

The Standard Model can incorporate baryogenesis, though the amount of net baryons (and leptons) thus created may not be sufficient to account for the present baryon asymmetry; this issue has not yet been determined decisively.

Baryogenesis within the Standard Model requires the electroweak symmetry breaking be a first-order phase transition, since otherwise sphalerons wipe off any baryon asymmetry that happened up to the phase transition, while later the amount of baryon non-conserving interactions is negligible.

The phase transition domain wall breaks the P-symmetry spontaneously, allowing for CP-symmetry violating interactions to create C-asymmetry on both its sides: quarks tend to accumulate on the broken phase side of the domain wall, while anti-quarks tend to accumulate on its unbroken phase side. This happens as follows:

Due to CP-symmetry violating electroweak interactions, some amplitudes involving quarks are not equal to the corresponding amplitudes involving anti-quarks, but rather have opposite phase (see CKM matrix and Kaon); since time reversal takes an amplitude to its complex conjugate, CPT-symmetry is conserved.

Though some of their amplitudes have opposite phases, both quarks and anti-quarks have positive energy, and hence acquire the same phase as they move in space-time. This phase also depends on their mass, which is identical but depends both on flavor and on the Higgs VEV which changes along the domain wall. Thus certain sums of amplitudes for quarks have different absolute values compared to those of anti-quarks. In all, quarks and anti-quarks may have different reflection and transmission probabilities through the domain wall, and it turns out that more quarks coming from the unbroken phase are transmitted compared to anti-quarks.

Thus there is a net baryonic flux through the domain wall. Due to sphaleron transitions, which are abundant in the unbroken phase, the net anti-baryonic content of the unbroken phase is wiped off. However, sphalerons are rare enough in the broken phase as not to wipe off the excess of baryons there. In total, there is net creation of baryons.

In this scenario, non-perturbative electroweak interactions (i.e. the sphaleron) are responsible for the B-violation, the perturbative electroweak Lagrangian is responsible for the CP-violation, and the domain wall is responsible for the lack of thermal equilibrium; together with the CP-violation it also creates a C-violation in each of its sides.

Read more about this topic:  Baryogenesis

Famous quotes containing the words standard and/or model:

    Any honest examination of the national life proves how far we are from the standard of human freedom with which we began. The recovery of this standard demands of everyone who loves this country a hard look at himself, for the greatest achievments must begin somewhere, and they always begin with the person. If we are not capable of this examination, we may yet become one of the most distinguished and monumental failures in the history of nations.
    James Baldwin (1924–1987)

    When Titian was mixing brown madder,
    His model was posed up a ladder.
    Said Titian, “That position
    Calls for coition,”
    So he lept up the ladder and had her.
    Anonymous.