Banach Space - Tensor Product

Tensor Product

Let X and Y be two K-vector spaces. The tensor product XY from X and Y is a K-vector space Z with a bilinear function T: X × YZ which has the following universal property: If T′: X × YZ′ is any bilinear function into a K-vector space Z′, then only one linear function f: ZZ′ with exists.

There are various norms that can be placed on the tensor product of the underlying vector spaces, amongst others the projective cross norm and injective cross norm. In general, the tensor product of complete spaces is not complete again.

Read more about this topic:  Banach Space

Famous quotes containing the word product:

    A gentleman opposed to their enfranchisement once said to me, “Women have never produced anything of any value to the world.” I told him the chief product of the women had been the men, and left it to him to decide whether the product was of any value.
    Anna Howard Shaw (1847–1919)