Axiom A - Definition

Definition

Let M be a smooth manifold with a diffeomorphism f: MM. Then f is an axiom A diffeomorphism if the following two conditions hold:

  1. The nonwandering set of f, Ω(f), is a hyperbolic set and compact.
  2. The set of periodic points of f is dense in Ω(f).

For surfaces, hyperbolicity of the nonwandering set implies the density of periodic points, but this is no longer true in higher dimensions. Nonetheless, axiom A diffeomorphisms are sometimes called hyperbolic diffeomorphisms, because the portion of M where the interesting dynamics occurs, namely, Ω(f), exhibits hyperbolic behavior.

Axiom A diffeomorphisms generalize Morse–Smale systems, which satisfy further restrictions (finitely many periodic points and transversality of stable and unstable submanifolds). Smale horseshoe map is an axiom A diffeomorphism with infinitely many periodic points and positive topological entropy.

Read more about this topic:  Axiom A

Famous quotes containing the word definition:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)