Axial Multipole Moments - Interior Axial Multipole Moments

Interior Axial Multipole Moments

Conversely, if the radius r is smaller than the smallest for which is significant (denoted ), the electric potential may be written


\Phi(\mathbf{r}) =
\frac{1}{4\pi\varepsilon} \sum_{k=0}^{\infty} I_{k}
r^{k} P_{k}(\cos \theta )

where the interior axial multipole moments are defined


I_{k} \equiv \int d\zeta \ \frac{\lambda(\zeta)}{\zeta^{k+1}}

Special cases include the interior axial monopole moment ( the total charge)


M_{0} \equiv \int d\zeta \ \frac{\lambda(\zeta)}{\zeta}
,

the interior axial dipole moment, etc. Each successive term in the expansion varies with a greater power of, e.g., the interior monopole potential varies as, the dipole potential varies as, etc. At short distances, the potential is well-approximated by the leading nonzero interior multipole term.

Read more about this topic:  Axial Multipole Moments

Famous quotes containing the words interior and/or moments:

    The night
    Makes everything grotesque. Is it because
    Night is the nature of man’s interior world?
    Wallace Stevens (1879–1955)

    What moments divine, what rapture serene.
    Cole Porter (1893–1964)