Astronomical Optical Interferometry

Astronomical Optical Interferometry

One of the first astronomical interferometers was built on the Mount Wilson Observatory's reflector telescope in 1920 in order to measure the diameters of stars. The red giant star Betelgeuse was among the first to have its diameter determined in this way. This method was extended to measurements using separated telescopes by Johnson, Betz and Towns (1974) in the infrared and by Labeyrie (1975) in the visible. In the late 1970s improvements in computer processing allowed for the first "fringe-tracking" interferometer, which operates fast enough to follow the blurring effects of astronomical seeing, leading to the Mk I,II and III series of interferometers. Similar techniques have now been applied at other astronomical telescope arrays, including the Keck Interferometer and the Palomar Testbed Interferometer.

In the 1980s the aperture synthesis interferometric imaging technique was extended to visible light and infrared astronomy by the Cavendish Astrophysics Group, providing the first very high resolution images of nearby stars. In 1995 this imaging technique was demonstrated on an array of separate optical telescopes for the first time, allowing a further improvement in resolution, and allowing even higher resolution imaging of stellar surfaces. The same imaging technique has now been applied at the Navy Prototype Optical Interferometer and the IOTA array. In the near future other arrays are expected to release their first interferometric images, including the ISI, VLTI, the CHARA array and the MRO interferometers.

Projects are now beginning that will use interferometers to search for extrasolar planets, either by astrometric measurements of the reciprocal motion of the star (as used by the Palomar Testbed Interferometer and the VLTI) or through the use of nulling (as will be used by the Keck Interferometer and Darwin).

A detailed description of the development of astronomical optical interferometry can be found here. Impressive results were obtained in the 1990s, with the Mark III measuring diameters of hundreds of stars and many accurate stellar positions, COAST and NPOI producing many very high resolution images, and ISI measuring stars in the mid-infrared for the first time. Additional results included direct measurements of the sizes of and distances to Cepheid variable stars, and young stellar objects. At the beginning of the 21st Century, the VLTI and Keck Interferometer large-telescope arrays came into operation, and the first interferometric measurements of the brightest few extra-galactic targets were performed.

Interferometers are mostly seen by astronomers as very specialized instruments, capable of a very limited range of observations. It is often said that an interferometer achieves the effect of a telescope the size of the distance between the apertures; this is only true in the limited sense of angular resolution. The combined effects of limited aperture area and atmospheric turbulence generally limit interferometers to observations of comparatively bright stars and active galactic nuclei. However, they have proven useful for making very high precision measurements of simple stellar parameters such as size and position (astrometry) and for imaging the nearest giant stars.

For details of individual instruments, see the list of astronomical interferometers at visible and infrared wavelengths.

A simple two-element optical interferometer. Light from two small telescopes (shown as lenses) is combined using beam splitters at detectors 1, 2, 3 and 4. The elements creating a 1/4 wave delay in the light allow the phase and amplitude of the interference visibility to be measured, which give information about the shape of the light source. A single large telescope with an aperture mask over it (labelled Mask), only allowing light through two small holes. The optical paths to detectors 1, 2, 3 and 4 are the same as in the left-hand figure, so this setup will give identical results. By moving the holes in the aperture mask and taking repeated measurements, images can be created using aperture synthesis which would have the same quality as would have been given by the right-hand telescope without the aperture mask. In an analogous way, the same image quality can be achieved by moving the small telescopes around in the left-hand figure - this is the basis of aperture synthesis, using widely separated small telescopes to simulate a giant telescope.

In astronomy interferometry is used to combine signals from two or more telescopes to obtain measurements with higher resolution than could be obtained with either telescopes individually. This technique is the basis for astronomical interferometer arrays, which can make measurements of very small astronomical objects if the telescopes are spread out over a wide area. If a large number of telescopes are used a picture can be produced which has resolution similar to a single telescope with the diameter of the combined spread of telescopes. These include radio telescope arrays such as VLA, VLBI, SMA, LOFAR and SKA, and more recently astronomical optical interferometer arrays such as COAST, NPOI and IOTA, resulting in the highest resolution optical images ever achieved in astronomy. The VLT Interferometer is expected to produce its first images using aperture synthesis soon, followed by other interferometers such as the CHARA array and the Magdalena Ridge Observatory Interferometer which may consist of up to 10 optical telescopes. If outrigger telescopes are built at the Keck Interferometer, it will also become capable of interferometric imaging.

Astronomical interferometers come in two types—direct detection and heterodyne. These differ only in the way that the signal is transmitted. Aperture synthesis can be used to computationally simulate a large telescope aperture from either type of interferometer.

Read more about Astronomical Optical Interferometry:  Astronomical Direct-detection Interferometry

Famous quotes containing the word optical:

    There is an optical illusion about every person we meet.
    Ralph Waldo Emerson (1803–1882)