Artificial Neural Network - Types of Artificial Neural Networks

Types of Artificial Neural Networks

Artificial neural network types vary from those with only one or two layers of single direction logic, to complicated multi–input many directional feedback loops and layers. On the whole, these systems use algorithms in their programming to determine control and organization of their functions. Some may be as simple as a one-neuron layer with an input and an output, and others can mimic complex systems such as dANN, which can mimic chromosomal DNA through sizes at the cellular level, into artificial organisms and simulate reproduction, mutation and population sizes.

Most systems use "weights" to change the parameters of the throughput and the varying connections to the neurons. Artificial neural networks can be autonomous and learn by input from outside "teachers" or even self-teaching from written-in rules.

Read more about this topic:  Artificial Neural Network

Famous quotes containing the words types of, types, artificial and/or networks:

    Science is intimately integrated with the whole social structure and cultural tradition. They mutually support one other—only in certain types of society can science flourish, and conversely without a continuous and healthy development and application of science such a society cannot function properly.
    Talcott Parsons (1902–1979)

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    Indifference creates an artificial peace.
    Mason Cooley (b. 1927)

    The great networks are there to prove that ideas can be canned like spaghetti. If everything ends up by tasting like everything else, is that not the evidence that it has been properly cooked?
    Frederic Raphael (b. 1931)