Properties of The Arnoldi Iteration
Let Qn denote the m-by-n matrix formed by the first n Arnoldi vectors q1, q2, …, qn, and let Hn be the (upper Hessenberg) matrix formed by the numbers hj,k computed by the algorithm:
We then have
This yields an alternative interpretation of the Arnoldi iteration as a (partial) orthogonal reduction of A to Hessenberg form. The matrix Hn can be viewed as the representation in the basis formed by the Arnoldi vectors of the orthogonal projection of A onto the Krylov subspace .
The matrix Hn can be characterized by the following optimality condition. The characteristic polynomial of Hn minimizes ||p(A)q1||2 among all monic polynomials of degree n. This optimality problem has a unique solution if and only if the Arnoldi iteration does not break down.
The relation between the Q matrices in subsequent iterations is given by
where
is an (n+1)-by-n matrix formed by adding an extra row to Hn.
Read more about this topic: Arnoldi Iteration
Famous quotes containing the words properties of the, properties of and/or properties:
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)