In applied mathematics as used in the engineering field of robotics, an arm solution is a solution of equations that allow the calculation of the precise design parameters of a robot's arms in such a way as to enable it to make certain movements.
A typical industrial robot is built with fixed length segments that are connected either at joints whose angles can be controlled, or along linear slides whose length can be controlled. If each angle and slide distance is known, the position and orientation of the end of the robot arm relative to the base can be computed with the simple trigonometry in robot control.
Going the other way — calculating the angles and slides needed to achieve a desired position and orientation — is much harder. The mathematical procedure for doing this is called an arm solution. For some robot designs, such as the Stanford arm, SCARA robot or cartesian coordinate robots, this can be done in closed form. Other robot designs require an iterative solution.
Famous quotes containing the words arm and/or solution:
“A state that denies its citizens their basic rights becomes a danger to its neighbors as well: internal arbitrary rule will be reflected in arbitrary external relations. The suppression of public opinion, the abolition of public competition for power and its public exercise opens the way for the state power to arm itself in any way it sees fit.... A state that does not hesitate to lie to its own people will not hesitate to lie to other states.”
—Václav Havel (b. 1936)
“What is history? Its beginning is that of the centuries of systematic work devoted to the solution of the enigma of death, so that death itself may eventually be overcome. That is why people write symphonies, and why they discover mathematical infinity and electromagnetic waves.”
—Boris Pasternak (18901960)