Results
The above formulae can be used to reconstruct the results of Aristarchus. The following table shows the results of a reconstruction using n = 2, x = 19.1 (φ = 87°) and θ = 1°, alongside the modern day accepted values.
Quantity | Relation | Reconstruction | Modern |
---|---|---|---|
s/t | Sun's radius in Earth radii | 6.7 | 109 |
t/ℓ | Earth's radius in Moon radii | 2.85 | 3.50 |
L/t | Earth-Moon distance in Earth radii | 20 | 60.32 |
S/t | Earth-Sun distance in Earth radii | 380 | 23,500 |
The error in this calculation comes primarily from the poor values for x and θ. The poor value for θ is especially surprising, since Archimedes writes that Aristarchus was the first to determine that the Sun and Moon had an apparent diameter of half a degree. This would give a value of θ = 0.25, and a corresponding distance to the moon of 80 Earth radii, a much better estimate. The disagreement of the work with Archimedes seems to be due to its taking an Aristarchos statement that the lunisolar diameter is 1/15 of a "meros" of the zodiac to mean 1/15 of a zodiacal sign (30°), unaware that the Greek word "meros" meant either "portion" or 7°1/2; and 1/15 of the latter amount is 1°/2, in agreement with Archimedes' testimony.
A similar procedure was later used by Hipparchus, who estimated the mean distance to the moon as 67 Earth radii, and Ptolemy, who took 59 Earth radii for this value.
Read more about this topic: Aristarchus On The Sizes And Distances
Famous quotes containing the word results:
“It amazes me when I hear any person prefer blindness to deafness. Such a person must have a terrible dread of being alone. Blindness makes one totally dependent on others, and deprives us of every satisfaction that results from light.”
—Horace Walpole (17171797)
“I have no doubt that it was a principle they fought for, as much as our ancestors, and not to avoid a three-penny tax on their tea; and the results of this battle will be as important and memorable to those whom it concerns as those of the battle of Bunker Hill, at least.”
—Henry David Thoreau (18171862)
“Different persons growing up in the same language are like different bushes trimmed and trained to take the shape of identical elephants. The anatomical details of twigs and branches will fulfill the elephantine form differently from bush to bush, but the overall outward results are alike.”
—Willard Van Orman Quine (b. 1908)