Ariel (moon) - Origin and Evolution

Origin and Evolution

Ariel is thought to have formed from an accretion disc or subnebula; a disc of gas and dust that either existed around Uranus for some time after its formation or was created by the giant impact that most likely gave Uranus its large obliquity. The precise composition of the subnebula is not known; however, the higher density of Uranian moons compared to the moons of Saturn indicates that it may have been relatively water-poor. Significant amounts of carbon and nitrogen may have been present in the form of carbon monoxide (CO) and molecular nitrogen (N2) instead of methane and ammonia. The moons that formed in such a subnebula would contain less water ice (with CO and N2 trapped as clathrate) and more rock, explaining the higher density.

The accretion process probably lasted for several thousand years before the moon was fully formed. Models suggest that impacts accompanying accretion caused heating of Ariel's outer layer, reaching a maximum temperature of around 195 K at a depth of about 31 km. After the end of formation, the subsurface layer cooled, while the interior of Ariel heated due to decay of radioactive elements present in its rocks. The cooling near-surface layer contracted, while the interior expanded. This caused strong extensional stresses in the moon's crust reaching estimates of 30 MPa, which may have led to cracking. Some present-day scarps and canyons may be a result of this process, which lasted for about 200 million years.

The initial accretional heating together with continued decay of radioactive elements and likely tidal heating may have led to melting of the ice if an antifreeze like ammonia (in the form of ammonia hydrate) or some salt was present. The melting may have led to the separation of ice from rocks and formation of a rocky core surrounded by an icy mantle. A layer of liquid water (ocean) rich in dissolved ammonia may have formed at the core–mantle boundary. The eutectic temperature of this mixture is 176 K. The ocean, however, is likely to have frozen long ago. The freezing of the water likely led to the expansion of the interior, which may have been responsible for the formation of the canyons and obliteration of the ancient surface. The liquids from the ocean may have been able to erupt to the surface, flooding floors of canyons in the process known as cryovolcanism.

Thermal modeling of Saturn's moon Dione, which is similar to Ariel in size, density and surface temperature, suggests that solid state convection could have lasted in Ariel's interior for billions of years, and that temperatures in excess of 173 K (the melting point of aqueous ammonia) may have persisted near its surface for several hundred million years after formation, and near a billion years closer to the core.

Read more about this topic:  Ariel (moon)

Famous quotes containing the words origin and, origin and/or evolution:

    We have got rid of the fetish of the divine right of kings, and that slavery is of divine origin and authority. But the divine right of property has taken its place. The tendency plainly is towards ... “a government of the rich, by the rich, and for the rich.”
    Rutherford Birchard Hayes (1822–1893)

    The real, then, is that which, sooner or later, information and reasoning would finally result in, and which is therefore independent of the vagaries of me and you. Thus, the very origin of the conception of reality shows that this conception essentially involves the notion of a COMMUNITY, without definite limits, and capable of a definite increase of knowledge.
    Charles Sanders Peirce (1839–1914)

    Historians will have to face the fact that natural selection determined the evolution of cultures in the same manner as it did that of species.
    Konrad Lorenz (1903–1989)