Ariel (moon) - Orbit

Orbit

Among Uranus's five major moons, Ariel is the second closest to the planet, orbiting at the distance of about 190,000 km. Its orbit has a small eccentricity and is inclined very little relative to the equator of Uranus. Its orbital period is around 2.5 Earth days, coincident with its rotational period. This means that one side of the moon always faces the planet; a condition known as tidal lock. Ariel's orbit lies completely inside the Uranian magnetosphere. The trailing hemispheres (those facing away from their directions of orbit) of airless satellites orbiting inside a magnetosphere (like Ariel) are struck by magnetospheric plasma co-rotating with the planet. This bombardment may lead to the darkening of the trailing hemispheres observed for all Uranian moons except Oberon (see below). Ariel also captures magnetospheric charged particles, producing a pronounced dip in energetic particle count near the moon's orbit observed by Voyager 2 in 1986.

Because Ariel, like Uranus, orbits the Sun almost on its side relative to its rotation, its northern and southern hemispheres face either directly towards or directly away from the Sun at the solstices. This means it is subject to an extreme seasonal cycle; just as Earth's poles see permanent night or daylight around the solstices, so Ariel's poles see permanent night or daylight for half a Uranian year (42 Earth years), with the Sun rising close to the zenith over one of the poles at each solstice. The Voyager 2 flyby coincided with the southern hemisphere's 1986 summer solstice, when nearly the entire northern hemisphere was unilluminated. Once every 42 years, when Uranus has an equinox and its equatorial plane intersects the Earth, mutual occultations of Uranus's moons become possible. A number of such events occurred in 2007–2008, including an occultation of Ariel by Umbriel on 19 August 2007.

Currently Ariel is not involved in any orbital resonance with other Uranian satellites. In the past, however, it may have been in a 5:3 resonance with Miranda, which could have been partially responsible for the heating of that moon (although the maximum heating attributable to a former 1:3 resonance of Umbriel with Miranda was likely about three times greater). Ariel may have once been locked in the 4:1 resonance with Titania, from which it later escaped. Escape from a mean motion resonance is much easier for the moons of Uranus than for those of Jupiter or Saturn, due to Uranus's lesser degree of oblateness. This resonance, which was likely encountered about 3.8 billion years ago, would have increased Ariel's orbital eccentricity, resulting in tidal friction due to time-varying tidal forces from Uranus. This would have caused warming of the moon's interior by as much as 20 K.

Read more about this topic:  Ariel (moon)

Famous quotes containing the word orbit:

    Words can have no single fixed meaning. Like wayward electrons, they can spin away from their initial orbit and enter a wider magnetic field. No one owns them or has a proprietary right to dictate how they will be used.
    David Lehman (b. 1948)

    The Fitchburg Railroad touches the pond about a hundred rods south of where I dwell. I usually go to the village along its causeway, and am, as it were, related to society by this link. The men on the freight trains, who go over the whole length of the road, bow to me as to an old acquaintance, they pass me so often, and apparently they take me for an employee; and so I am. I too would fain be a track-repairer somewhere in the orbit of the earth.
    Henry David Thoreau (1817–1862)

    “To my thinking” boomed the Professor, begging the question as usual, “the greatest triumph of the human mind was the calculation of Neptune from the observed vagaries of the orbit of Uranus.”
    “And yours,” said the P.B.
    Samuel Beckett (1906–1989)