Arc (projective Geometry) - k-arcs in A Projective Space

k-arcs in A Projective Space

In the finite projective space PG(n, q) with n ≥ 3, a set A of kn + 1 points such that no n + 1 points lie in a common hyperplane is called a (spacial) k-arc. This definition generalizes the definition of a k-arc in a plane (where n = 2).

Read more about this topic:  Arc (projective Geometry)

Famous quotes containing the word space:

    The merit of those who fill a space in the world’s history, who are borne forward, as it were, by the weight of thousands whom they lead, shed a perfume less sweet than do the sacrifices of private virtue.
    Ralph Waldo Emerson (1803–1882)