k-arcs in A Projective Space
In the finite projective space PG(n, q) with n ≥ 3, a set A of k ≥ n + 1 points such that no n + 1 points lie in a common hyperplane is called a (spacial) k-arc. This definition generalizes the definition of a k-arc in a plane (where n = 2).
Read more about this topic: Arc (projective Geometry)
Famous quotes containing the word space:
“Thus all our dignity lies in thought. Through it we must raise ourselves, and not through space or time, which we cannot fill. Let us endeavor, then, to think well: this is the mainspring of morality.”
—Blaise Pascal (16231662)