k-arcs in A Projective Plane
In a finite projective plane π (not necessarily Desarguesian) a set A of k (k ≥ 3) points such that no three points of A are collinear (on a line) is called a k-arc. If the plane π has order q then k ≤ q + 2, however the maximum value of k can only be achieved if q is even. In a plane of order q, a (q + 1)-arc is called an oval and, if q is even, a (q + 2)-arc is called a hyperoval.
A k-arc which can not be extended to a larger arc is called a complete arc. In the Desarguesian projective planes, PG(2,q), no q-arc is complete, so they may all be extended to ovals.
Read more about this topic: Arc (projective Geometry)
Famous quotes containing the word plane:
“In time the scouring of wind and rain will wear down the ranges and plane off the region until it has the drab monotony of the older deserts. In the meantimea two-million-year meantimetravelers may enjoy the cruel beauties of a desert in its youth,....”
—For the State of California, U.S. public relief program (1935-1943)