Appell's Equation of Motion - Derivation

Derivation

The change in the particle positions rk for an infinitesimal change in the D generalized coordinates is


d\mathbf{r}_{k} = \sum_{r=1}^{D} dq_{r} \frac{\partial \mathbf{r}_{k}}{\partial q_{r}}

Taking two derivatives with respect to time yields an equivalent equation for the accelerations


\frac{\partial \mathbf{a}_{k}}{\partial \alpha_{r}} = \frac{\partial \mathbf{r}_{k}}{\partial q_{r}}

The work done by an infinitesimal change dqr in the generalized coordinates is


dW = \sum_{r=1}^{D} Q_{r} dq_{r} = \sum_{k=1}^{N} \mathbf{F}_{k} \cdot d\mathbf{r}_{k} = \sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot d\mathbf{r}_{k}

Substituting the formula for drk and swapping the order of the two summations yields the formulae


dW = \sum_{r=1}^{D} Q_{r} dq_{r} = \sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \sum_{r=1}^{D} dq_{r} \left( \frac{\partial \mathbf{r}_{k}}{\partial q_{r}} \right) =
\sum_{r=1}^{D} dq_{r} \sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{r}_{k}}{\partial q_{r}} \right)

Therefore, the generalized forces are


Q_{r} =
\sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{r}_{k}}{\partial q_{r}} \right) =
\sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{a}_{k}}{\partial \alpha_{r}} \right)

This equals the derivative of S with respect to the generalized accelerations


\frac{\partial S}{\partial \alpha_{r}} =
\frac{\partial}{\partial \alpha_{r}} \frac{1}{2} \sum_{k=1}^{N} m_{k} \left| \mathbf{a}_{k} \right|^{2} =
\sum_{k=1}^{N} m_{k} \mathbf{a}_{k} \cdot \left( \frac{\partial \mathbf{a}_{k}}{\partial \alpha_{r}} \right)

yielding Appell’s equation of motion


\frac{\partial S}{\partial \alpha_{r}} = Q_{r}

Read more about this topic:  Appell's Equation Of Motion