Antibacterial - Resistance

Resistance

The emergence of resistance of bacteria to antibacterial drugs is a common phenomenon. Emergence of resistance often reflects evolutionary processes that take place during antibacterial drug therapy. The antibacterial treatment may select for bacterial strains with physiologically or genetically enhanced capacity to survive high doses of antibacterials. Under certain conditions, it may result in preferential growth of resistant bacteria, while growth of susceptible bacteria is inhibited by the drug. For example, antibacterial selection within whole bacterial populations for strains having previously acquired antibacterial-resistance genes was demonstrated in 1943 by the Luria–Delbrück experiment. Survival of bacteria often results from an inheritable resistance. Resistance to antibacterials also occurs through horizontal gene transfer. Horizontal transfer is more likely to happen in locations of frequent antibiotic use. Antibacterials such as penicillin and erythromycin, which used to have high efficacy against many bacterial species and strains, have become less effective, because of increased resistance of many bacterial strains. Antibacterial resistance may impose a biological cost, thereby reducing fitness of resistant strains, which can limit the spread of antibacterial-resistant bacteria, for example, in the absence of antibacterial compounds. Additional mutations, however, may compensate for this fitness cost and can aid the survival of these bacteria.

Several molecular mechanisms of antibacterial resistance exist. Intrinsic antibacterial resistance may be part of the genetic makeup of bacterial strains. For example, an antibiotic target may be absent from the bacterial genome. Acquired resistance results from a mutation in the bacterial chromosome or the acquisition of extra-chromosomal DNA. Antibacterial-producing bacteria have evolved resistance mechanisms that have been shown to be similar to, and may have been transferred to, antibacterial-resistant strains. The spread of antibacterial resistance often occurs through vertical transmission of mutations during growth and by genetic recombination of DNA by horizontal genetic exchange. For instance, antibacterial resistance genes can be exchanged between different bacterial strains or species via plasmids that carry these resistance genes. Plasmids that carry several different resistance genes can confer resistance to multiple antibacterials. Cross-resistance to several antibacterials may also occur when a resistance mechanism encoded by a single gene conveys resistance to more than one antibacterial compound.

Antibacterial-resistant strains and species, sometimes referred to as "superbugs", now contribute to the emergence of diseases that were for a while well controlled. For example, emergent bacterial strains causing tuberculosis (TB) that are resistant to previously effective antibacterial treatments pose many therapeutic challenges. Every year, nearly half a million new cases of multidrug-resistant tuberculosis (MDR-TB) are estimated to occur worldwide. For example, NDM-1 is a newly identified enzyme conveying bacterial resistance to a broad range of beta-lactam antibacterials. United Kingdom Health Protection Agency has stated that "most isolates with NDM-1 enzyme are resistant to all standard intravenous antibiotics for treatment of severe infections."

Read more about this topic:  Antibacterial

Famous quotes containing the word resistance:

    The resistance we make to our passions is due to their weakness, not our strength.
    François, Duc De La Rochefoucauld (1613–1680)

    Even the most subjected person has moments of rage and resentment so intense that they respond, they act against. There is an inner uprising that leads to rebellion, however short- lived. It may be only momentary but it takes place. That space within oneself where resistance is possible remains.
    bell hooks (b. c. 1955)

    Hence to fight and conquer in all your battles is not supreme excellence; supreme excellence consists in breaking the enemy’s resistance without fighting.
    Sun Tzu (6–5th century B.C.)