Anti-tank Missile - History

History

The earliest guided anti-tank missile to see combat was the German Rotkappen wire guided missile of World War 2. The Rotkappen saw limited combat service during 1945 and consisted of a winged missile, resembling a large bird about to land with wingtip steering rocket jets. The warhead was from the standard German 150mm. Holladung Hl/A. HEAT shell and was capable of penetrating up to 205mm. of perpendicular rolled homogeneous armour plate. The missile was launched from an infantry deployable sled and was guided by a remote joystick control box some distance from the launching sled via wire spooled out during the missile's flight. A Rotkappen crew consisted of three members, the operator, the sled puller (with a missile ready to fire) and the spare missile carrier. Only two missles were usually carried by a Rotkappen team. Accuracy at longer ranges was hampered by the human inability to enjoy stereoscopic vision and judge relative distances after only a few hundred metres. Rotkappen operators simply could not tell if the missile was heading for the target or had already flown past it.

The Malkara missile (from an Aboriginal word for "shield") was one of the earliest anti-tank guided missiles (ATGMs). It was jointly developed by Australia and the United Kingdom between 1951 and 1954, and was in service from 1958 until gradually replaced by the Swingfire missile in the late 1960s. It was intended to be light enough to deploy with airborne forces, yet powerful enough to knock out any tank then in service.

First-generation manually command guided MCLOS missiles require input from an operator using a joystick or similar device to steer the missile to the target. The disadvantage is that the operator must keep the sight's cross hairs on the target and then steer the missile into the cross hairs—i.e. the line-of-sight. To do this, the operator must be well trained (spending hundreds of hours on a simulator) and must remain stationary and in view of the target during the flight time of the missile. Because of this, the operator is vulnerable while guiding the missile. The first system to become operational and to see combat was the French Nord SS.10 during the early 1950s.

Second-generation semi-automatically command guided SACLOS missiles require the operator to only keep the sights on the target until impact. Automatic guidance commands are sent to the missile through wires or radio, or the missile relies on laser marking or a TV camera view from the nose of the missile. Examples are the Russian 9M133 Kornet and the American Hellfire I missiles. Again, the operator must remain stationary during the missile's flight.

Third-generation guidance systems rely on a laser, electro-optical imager (IIR) seeker or a W band radar seeker in the nose of the missile. Once the target is identified, the missile needs no further guidance during flight; it is "fire-and-forget", and the missile operator is free to retreat. However, fire-and-forget missiles are more subject to electronic countermeasures than MCLOS and SACLOS missiles. Examples include the German PARS 3 LR, Israeli LAHAT and Spike and the Indian Nag.

Most modern ATGMs have shaped charge high explosive (HEAT) warheads, designed specifically for penetrating armor. Tandem-charge missiles attempt to defeat ERA protected armor. The small initial charge sets off the ERA while the follow-up main charge attempts to penetrate the main armor. Top-attack weapons such as the Indian Nag, American Javelin and the Swedish Bill are designed to focus the explosion down through an armored fighting vehicle's thinner turret-roof or upper-hull armor.

Read more about this topic:  Anti-tank Missile

Famous quotes containing the word history:

    The history of all hitherto existing society is the history of class struggles.
    Karl Marx (1818–1883)

    In the history of the human mind, these glowing and ruddy fables precede the noonday thoughts of men, as Aurora the sun’s rays. The matutine intellect of the poet, keeping in advance of the glare of philosophy, always dwells in this auroral atmosphere.
    Henry David Thoreau (1817–1862)

    The history of work has been, in part, the history of the worker’s body. Production depended on what the body could accomplish with strength and skill. Techniques that improve output have been driven by a general desire to decrease the pain of labor as well as by employers’ intentions to escape dependency upon that knowledge which only the sentient laboring body could provide.
    Shoshana Zuboff (b. 1951)