Antenna Diversity - Antenna Techniques

Antenna Techniques

Antenna diversity can be realized in several ways. Depending on the environment and the expected interference, designers can employ one or more of these methods to improve signal quality. In fact multiple methods are frequently used to further increase reliability.

  • Spatial diversity employs multiple antennas, usually with the same characteristics, that are physically separated from one another. Depending upon the expected incidence of the incoming signal, sometimes a space on the order of a wavelength is sufficient. Other times much larger distances are needed. Cellularization or sectorization, for example, is a spatial diversity scheme that can have antennas or base stations miles apart. This is especially beneficial for the mobile communication industry since it allows multiple users to share a limited communication spectrum and avoid co-channel interference.
  • Pattern diversity consists of two or more co-located antennas with different radiation patterns. This type of diversity makes use of directive antennas that are usually physically separated by some (often short) distance. Collectively they are capable of discriminating a large portion of angle space and can provide a higher gain versus a single omnidirectional radiator.
  • Polarization diversity combines pairs of antennas with orthogonal polarizations (i.e. horizontal/vertical, ± slant 45°, Left-hand/Right-hand CP etc.). Reflected signals can undergo polarization changes depending on the medium through which they are travelling. A polarisation difference of 90° will result in an attenuation factor of up to 34dB in signal strength. By pairing two complementary polarizations, this scheme can immunize a system from polarization mismatches that would otherwise cause signal fade. Additionally, such diversity has proven valuable at radio and mobile communication base stations since it is less susceptible to the near random orientations of transmitting antennas.
  • Transmit/Receive diversity uses two separate, collocated antennas for transmit and receive functions. Such a configuration eliminates the need for a duplexer and can protect sensitive receiver components from the high power used in transmit.
  • Adaptive arrays can be a single antenna with active elements or an array of similar antennas with ability to change their combined radiation pattern as different conditions persist. Active electronically scanned arrays (AESAs) manipulate phase shifters and attenuators at the face of each radiating site to provide a near instantaneous scan ability as well as pattern and polarization control. This is especially beneficial for radar applications since it affords a signal antenna the ability to switch among several different modes such as searching, tracking, mapping and jamming countermeasures.

Read more about this topic:  Antenna Diversity

Famous quotes containing the word techniques:

    It is easy to lose confidence in our natural ability to raise children. The true techniques for raising children are simple: Be with them, play with them, talk to them. You are not squandering their time no matter what the latest child development books say about “purposeful play” and “cognitive learning skills.”
    Neil Kurshan (20th century)