Angular Momentum Coupling - Spin-orbit Coupling

Spin-orbit Coupling

The behavior of atoms and smaller particles is well described by the theory of quantum mechanics, in which each particle has an intrinsic angular momentum called spin and specific configurations (of e.g. electrons in an atom) are described by a set of quantum numbers. Collections of particles also have angular momenta and corresponding quantum numbers, and under different circumstances the angular momenta of the parts couple in different ways to form the angular momentum of the whole. Angular momentum coupling is a category including some of the ways that subatomic particles can interact with each other.

In atomic physics, spin-orbit coupling, also known as spin-pairing, describes a weak magnetic interaction, or coupling, of the particle spin and the orbital motion of this particle, e.g. the electron spin and its motion around an atomic nucleus. One of its effects is to separate the energy of internal states of the atom, e.g. spin-aligned and spin-antialigned that would otherwise be identical in energy. This interaction is responsible for many of the details of atomic structure.

In the macroscopic world of orbital mechanics, the term spin-orbit coupling is sometimes used in the same sense as spin-orbital resonance.

Read more about this topic:  Angular Momentum Coupling

Famous quotes containing the word coupling:

    The time of the seasons and the constellations
    The time of milking and the time of harvest
    The time of the coupling of man and woman
    And that of beasts. Feet rising and falling.
    Eating and drinking. Dung and death.
    —T.S. (Thomas Stearns)