Anderson Localization - Analysis

Analysis

The phenomenon of Anderson localization, particularly that of weak localization, finds its origin in the wave interference between multiple-scattering paths. In the strong scattering limit, the severe interferences can completely halt the waves inside the disordered medium.

For non-interacting electrons, a highly successful approach was put forward in 1979 by Abrahams et al. This scaling hypothesis of localization suggests that a disorder-induced metal-insulator transition (MIT) exists for non-interacting electrons in three dimensions (3D) at zero magnetic field and in the absence of spin-orbit coupling. Much further work has subsequently supported these scaling arguments both analytically and numerically (Brandes et al., 2003; see Further Reading). In 1D and 2D, the same hypothesis shows that there are no extended states and thus no MIT. However, since 2 is the lower critical dimension of the localization problem, the 2D case is in a sense close to 3D: states are only marginally localized for weak disorder and a small magnetic field or spin-orbit coupling can lead to the existence of extended states and thus an MIT. Consequently, the localization lengths of a 2D system with potential-disorder can be quite large so that in numerical approaches one can always find a localization-delocalization transition when either decreasing system size for fixed disorder or increasing disorder for fixed system size.

Most numerical approaches to the localization problem use the standard tight-binding Anderson Hamiltonian with onsite-potential disorder. Characteristics of the electronic eigenstates are then investigated by studies of participation numbers obtained by exact diagonalization, multifractal properties, level statistics and many others. Especially fruitful is the transfer-matrix method (TMM) which allows a direct computation of the localization lengths and further validates the scaling hypothesis by a numerical proof of the existence of a one-parameter scaling function. Direct numerical solution of Maxwell equations to demonstrate Anderson localization of light has been implemented.(Conti and Fratalocchi, 2008)

Read more about this topic:  Anderson Localization

Famous quotes containing the word analysis:

    A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.
    Karl Marx (1818–1883)