In mathematics, specifically complex geometry, an analytic variety is defined locally as the set of common zeros of finitely many analytic functions. It is analogous to the included concept of complex algebraic variety, and every complex manifold is an analytic variety. Since analytic varieties may have singular points, not all analytic varieties are complex manifolds. An analytic variety is also called a (real or complex) analytic set.
Famous quotes containing the words analytic and/or variety:
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)
“If variety is capable of filling every hour of the married state with the highest joy, then might it be said that Lord and Lady Dellwyn were completely blessed, for every idea that had the power of raising pleasure in the bosom of the one, depressed that of the other with sorrow and affliction.”
—Sarah Fielding (17101768)