In mathematics, specifically complex geometry, an analytic variety is defined locally as the set of common zeros of finitely many analytic functions. It is analogous to the included concept of complex algebraic variety, and every complex manifold is an analytic variety. Since analytic varieties may have singular points, not all analytic varieties are complex manifolds. An analytic variety is also called a (real or complex) analytic set.
Famous quotes containing the words analytic and/or variety:
“You, that have not lived in thought but deed,
Can have the purity of a natural force,
But I, whose virtues are the definitions
Of the analytic mind, can neither close
The eye of the mind nor keep my tongue from speech.”
—William Butler Yeats (18651939)
“It has become a peoples war, and peoples of all sorts and races, of every degree of power and variety of fortune, are involved in its sweeping processes of change and settlement.”
—Woodrow Wilson (18561924)