**Early Theories, 1686 To 1916**

- Newton (1686)

In Newton's (1686) theory (rewritten using more modern mathematics) the density of mass generates a scalar field, the gravitational potential in joules per kilogram, by

Using the Nabla operator for the gradient and divergence (partial derivatives), this can be conveniently written as:

This scalar field governs the motion of a free-falling particle by:

At distance, *r*, from an isolated mass, *M*, the scalar field is

The theory of Newton, and Lagrange's improvement on the calculation (applying the variational principle), completely fails to take into account relativistic effects of course, and so can be rejected as a viable theory of gravity. Even so, Newton's theory is thought to be exactly correct in the limit of weak gravitational fields and low speeds and all other theories of gravity need to reproduce Newton's theory in the appropriate limits.

- Mechanical explanations (1650–1900)

To explain Newton's theory, some mechanical explanations of gravitation (incl. Le Sage's theory) were created between 1650 and 1900, but they were overthrown because most of them lead to an unacceptable amount of drag, which is not observed. Other models are violating the energy conservation law and are incompatible with modern thermodynamics.

- Electrostatic models (1870–1900)

At the end of the 19th century, many tried to combine Newton's force law with the established laws of electrodynamics, like those of Weber, Carl Friedrich Gauss, Bernhard Riemann and James Clerk Maxwell. Those models were used to explain the perihelion advance of Mercury. In 1890, Lévy succeeded in doing so by combining the laws of Weber and Riemann, whereby the speed of gravity is equal to the speed of light in his theory. And in another attempt, Paul Gerber (1898) even succeeded in deriving the correct formula for the Perihelion shift (which was identical to that formula later used by Einstein). However, because the basic laws of Weber and others were wrong (for example, Weber's law was superseded by Maxwell's theory), those hypothesis were rejected. In 1900, Hendrik Lorentz tried to explain gravity on the basis of his Lorentz ether theory and the Maxwell equations. He assumed, like Ottaviano Fabrizio Mossotti and Johann Karl Friedrich Zöllner, that the attraction of opposite charged particles is stronger than the repulsion of equal charged particles. The resulting net force is exactly what is known as universal gravitation, in which the speed of gravity is that of light. But Lorentz calculated that the value for the perihelion advance of Mercury was much too low.

- Lorentz-invariant models (1905–1910)

Based on the principle of relativity, Henri Poincaré (1905, 1906), Hermann Minkowski (1908), and Arnold Sommerfeld (1910) tried to modify Newton's theory and to establish a Lorentz invariant gravitational law, in which the speed of gravity is that of light. However, like in Lorentz's model the value for the perihelion advance of Mercury was much too low.

- Einstein (1908, 1912)

Einstein's two part publication in 1912 (and before in 1908) is really only important for historical reasons. By then he knew of the gravitational redshift and the deflection of light. He had realized that Lorentz transformations are not generally applicable, but retained them. The theory states that the speed of light is constant in free space but varies in the presence of matter. The theory was only expected to hold when the source of the gravitational field is stationary. It includes the principle of least action:

where is the Minkowski metric, and there is a summation from 1 to 4 over indices and .

Einstein and Grossmann (1913) includes Riemannian geometry and tensor calculus.

The equations of electrodynamics exactly match those of GR. The equation

is not in GR. It expresses the stress-energy tensor as a function of the matter density.

- Abraham (1912)

While this was going on, Abraham was developing an alternative model of gravity in which the speed of light depends on the gravitational field strength and so is variable almost everywhere. Abraham's 1914 review of gravitation models is said to be excellent, but his own model was poor.

- Nordström (1912)

The first approach of Nordström (1912) was to retain the Minkowski metric and a constant value of but to let mass depend on the gravitational field strength . Allowing this field strength to satisfy

where is rest mass energy and is the d'Alembertian,

and

where is the four-velocity and the dot is a differential with respect to time.

The second approach of Nordström (1913) is remembered as the first logically consistent relativistic field theory of gravitation ever formulated. From (note, notation of Pais (1982) not Nordström):

where is a scalar field,

This theory is Lorentz invariant, satisfies the conservation laws, correctly reduces to the Newtonian limit and satisfies the weak equivalence principle.

- Einstein and Fokker (1914)

This theory is Einstein's first treatment of gravitation in which general covariance is strictly obeyed. Writing:

they relate Einstein-Grossmann (1913) to Nordström (1913). They also state:

That is, the trace of the stress energy tensor is proportional to the curvature of space.

- Einstein (1916, 1917)

This theory is what we now know of as General Relativity. Discarding the Minkowski metric entirely, Einstein gets:

which can also be written

Five days before Einstein presented the last equation above, Hilbert had submitted a paper containing an almost identical equation. See relativity priority dispute. Hilbert was the first to correctly state the Einstein-Hilbert action for GR, which is:

where is Newton's gravitational constant, is the Ricci curvature of space, and is the action due to mass.

GR is a tensor theory, the equations all contain tensors. Nordström's theories, on the other hand, are scalar theories because the gravitational field is a scalar. Later in this article you will see scalar-tensor theories that contain a scalar field in addition to the tensors of GR, and other variants containing vector fields as well have been developed recently.

Read more about this topic: Alternatives To General Relativity

### Famous quotes containing the word early:

“*Early* rising is no pleasure; *early* drinking’s just the measure.”

—François Rabelais (1494–1553)