Relationship To Kalman Filters
A Kalman filter estimates the values of state variables and corrects them in a manner similar to an alpha beta filter or a state observer. However, a Kalman filter does this in a much more formal and rigorous manner. The principal differences between Kalman filters and alpha beta filters are the following.
- Like state observers, Kalman filters use a detailed dynamic system model that is not restricted to two states.
- Like state observers, Kalman filters in general use multiple observed variables to correct state variable estimates, and these do not have to be direct measurements of individual system states.
- A Kalman filter uses covariance noise models for states and observations. Using these, a time-dependent estimate of state covariance is updated automatically, and from this the Kalman gain matrix terms are calculated. Alpha beta filter gains are manually selected and static.
- For certain classes of problems, a Kalman filter is Wiener optimal, while alpha beta filtering is in general suboptimal.
A Kalman filter designed to track a moving object using a constant-velocity target dynamics (process) model (i.e., constant velocity between measurement updates) with process noise covariance and measurement covariance held constant will converge to the same structure as an alpha-beta filter. However, a Kalman filter's gain is computed recursively at each time step using the assumed process and measurement error statistics, whereas the alpha-beta's gain is computed ad hoc.
Read more about this topic: Alpha Beta Filter
Famous quotes containing the words relationship and/or filters:
“Poetry is above all a concentration of the power of language, which is the power of our ultimate relationship to everything in the universe.”
—Adrienne Rich (b. 1929)
“Raise a million filters and the rain will not be clean, until the longing for it be refined in deep confession. And still we hear, If only this nation had a soul, or, Let us change the way we trade, or, Let us be proud of our region.”
—Leonard Cohen (b. 1934)