Algorithmically Random Sequence - Relative Randomness

Relative Randomness

As each of the equivalent definitions of a Martin-Löf random sequence is based on what is computable by some Turing machine, one can naturally ask what is computable by a Turing oracle machine. For a fixed oracle A, a sequence B which is not only random but in fact satisfies the equivalent definitions for computability relative to A (e.g., no martingale which is constructive relative to the oracle A succeeds on B) is said to be random relative to A. Two sequences, while themselves random, may contain very similar information, and therefore neither will be random relative to the other. Any time there is a Turing reduction from one sequence to another, the second sequence cannot be random relative to the first, just as computable sequences are themselves nonrandom; in particular, this means that Chaitin's Ω is not random relative to the halting problem.

An important result relating to relative randomness is van Lambalgen's theorem, which states that if C is the sequence composed from A and B by interleaving the first bit of A, the first bit of B, the second bit of A, the second bit of B, and so on, then C is algorithmically random if and only if A is algorithmically random, and B is algorithmically random relative to A. A closely related consequence is that if A and B are both random themselves, then A is random relative to B if and only if B is random relative to A.

Read more about this topic:  Algorithmically Random Sequence

Famous quotes containing the word relative:

    Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.
    Charles Sanders Peirce (1839–1914)