Algorithm Characterizations - 2003 Blass and Gurevich's Characterization

2003 Blass and Gurevich's Characterization

Blass and Gurevich describe their work as evolved from consideration of Turing machines and pointer machines, specifically Kolmogorov-Uspensky machines (KU machines), Schönhage Storage Modification Machines (SMM), and linking automata as defined by Knuth. The work of Gandy and Markov are also described as influential precursors.

Gurevich offers a 'strong' definition of an algorithm (boldface added):

"...Turing's informal argument in favor of his thesis justifies a stronger thesis: every algorithm can be simulated by a Turing machine....In practice, it would be ridiculous... an one generalize Turing machines so that any algorithm, never mind how abstract, can be modeled by a generalized machine?...But suppose such generalized Turing machines exist. What would their states be?...a first-order structure ... a particular small instruction set suffices in all cases ... computation as an evolution of the state ... could be nondeterministic... can interact with their environment ... parallel and multi-agent ... dynamic semantics ... Turing's thesis ... the notion of (first order) structure of " (Gurevich 2000, p. 1-2)

The above phrase computation as an evolution of the state differs markedly from the definition of Knuth and Stone—the "algorithm" as a Turing machine program. Rather, it corresponds to what Turing called the complete configuration (cf Turing's definition in Undecidable, p. 118) -- and includes both the current instruction (state) and the status of the tape. .

In Algorithm examples we see the evolution of the state first-hand.

Read more about this topic:  Algorithm Characterizations