Basic Properties of The Polynomial
The Alexander polynomial is symmetric: for all knots K.
- From the point of view of the definition, this is an expression of the Poincaré Duality isomorphism where is the quotient of the field of fractions of by, considered as a -module, and where is the conjugate -module to ie: as an abelian group it is identical to but the covering transformation acts by .
and it evaluates to a unit on 1: .
- From the point of view of the definition, this is an expression of the fact that the knot complement is a homology circle, generated by the covering transformation . More generally if is a 3-manifold such that it has an Alexander polynomial defined as the order ideal of its infinite-cyclic covering space. In this case is, up to sign, equal to the order of the torsion subgroup of .
It is known that every integral Laurent polynomial which is both symmetric and evaluates to a unit at 1 is the Alexander polynomial of a knot (Kawauchi 1996).
Read more about this topic: Alexander Polynomial
Famous quotes containing the words basic and/or properties:
“Surrealism is not a school of poetry but a movement of liberation.... A way of rediscovering the language of innocence, a renewal of the primordial pact, poetry is the basic text, the foundation of the human order. Surrealism is revolutionary because it is a return to the beginning of all beginnings.”
—Octavio Paz (b. 1914)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)