Airy Wave Theory - Second-order Wave Properties - Wave Energy Density

Wave Energy Density

Wave energy is a quantity of primary interest, since it is a primary quantity that is transported with the wave trains. As can be seen above, many wave quantities like surface elevation and orbital velocity are oscillatory in nature with zero mean (within the framework of linear theory). In water waves, the most used energy measure is the mean wave energy density per unit horizontal area. It is the sum of the kinetic and potential energy density, integrated over the depth of the fluid layer and averaged over the wave phase. Simplest to derive is the mean potential energy density per unit horizontal area Epot of the surface gravity waves, which is the deviation of the potential energy due to the presence of the waves:

E_\text{pot}\, =\, \overline{\int_{-h}^{\eta} \rho\,g\,z\;\text{d}z}\, -\, \int_{-h}^0 \rho\,g\,z\; \text{d}z\, =\, \overline{\frac12\,\rho\,g\,\eta^2}\, =\, \frac14\, \rho\,g\,a^2,

with an overbar denoting the mean value (which in the present case of periodic waves can be taken either as a time average or an average over one wavelength in space).

The mean kinetic energy density per unit horizontal area Ekin of the wave motion is similarly found to be:

 E_\text{kin}\, =\, \overline{\int_{-h}^0 \frac12\, \rho\, \left\; \text{d}z}\, -\, \int_{-h}^0 \frac12\, \rho\, \left| \boldsymbol{U} \right|^2\; \text{d}z\, =\, \frac14\, \rho\, \frac{\sigma^2}{k\, \tanh\, (k\, h)}\,a^2,

with σ the intrinsic frequency, see the table of wave quantities. Using the dispersion relation, the result for surface gravity waves is:

As can be seen, the mean kinetic and potential energy densities are equal. This is a general property of energy densities of progressive linear waves in a conservative system. Adding potential and kinetic contributions, Epot and Ekin, the mean energy density per unit horizontal area E of the wave motion is:

In case of surface tension effects not being negligible, their contribution also adds to the potential and kinetic energy densities, giving

 E_\text{pot}\, =\, E_\text{kin}\, =\, \frac14\, \left( \rho\, g\, +\, \gamma\, k^2 \right)\, a^2, \qquad \text{so} \qquad E\, =\, E_\text{pot}\, +\, E_\text{kin}\, =\, \frac12\, \left( \rho\, g\, +\, \gamma\, k^2 \right)\, a^2,

with γ the surface tension.

Read more about this topic:  Airy Wave Theory, Second-order Wave Properties

Famous quotes containing the words wave and/or energy:

    I don’t know a great deal about life in Washington for women—I spent a summer there once working in the White House, and my main memories of the experience have to do with a very bad permanent wave I have always been convinced kept me from having a meaningful relationship with President Kennedy ...
    Nora Ephron (b. 1941)

    Just as we need to encourage women to test life’s many options, we need to acknowledge real limits of energy and resources. It would be pointless and cruel to prescribe role combination for every woman at each moment of her life. Life has its seasons. There are moments when a woman ought to invest emotionally in many different roles, and other moments when she may need to conserve her psychological energies.
    Faye J. Crosby (20th century)